

University of Illinois UIC

Welcome CHEM 232

Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 12, 2010

Course Website

http://www.chem.uic.edu/chem232

- 🗹 Syllabus
- Course Policies
- TA office hours and info
- Lecture slides (updated each week)
 - Other handouts
- Announcements (Course News)
- - Course Calendar

Assessment

Quizzes: 25 x 10 points = 250 points (25%)

- Exams: 3 x 150 points = 450 points (50%)
- **Marcon Final Exam: 250 points (25%)**

CHEM 232, Spring 2010

Slide 3 Lecture 1: January 12

To Do This Week

CHEM 232, Spring 2010

Slide 4 Lecture 1: January 12

Keys to Success

- 1. Attend all lectures and discussion sections.
- 2. Don't fall behind. Organic chemistry is easy, but each topic builds on the previous.
- **3**. Don't memorize. Organic chemistry is conceptual.
- **4.** Work through homework carefully. Take notes.
- 5. Always ask yourself "Why" for everything you read or hear. You may not always find the answer, but just asking will help you to find connections and remember more.

CHEM 232 Organic Chemistry I University of Illinois U C

Origins and Examples of Organic Chemistry

Introduction

Vitalism

Living

posses vital force
compounds derived from are "organic" (coined by J. Berzelius, 1807)
could not be synthesized in the laboratory

- •termed "inorganic"
- •derived from *nonliving* matter
- •can be synthesized in the lab

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 7 Lecture 1: January 12

Wohler Synthesis Debunks Vitalism

Self Test Question

What is the minimum requirement, *today*, for a *chemical substance* to be classified as *organic*?

- A. derived from living matter
- B. contains carbon
- C. cannot be synthesized
- D. bought at Whole Foods
- E. combustion yields SO₂

University of UIC CHEM 232, Spring 2010 Lecture

Slide 9 Lecture 1: January 12

Vitalism Lives On. . .

terpinen-4-ol sold as tea tree oil or Melaleuca oil

fructose "fruit sugar" also in HFCS

Organic Chemistry Everywhere

Natural Products

Pharmaceuticals

Optics - Transition Lenses?

CHEM 232 Organic Chemistry I University of Illinois UIC

Atomic Structure A General Chemistry Review

Section: 1.1

Atomic Composition

	particle	charge	mass molar mass	symbol
	proton	positive	I.6726 x 10 ⁻²⁴ g I.0073 g/mol	Ρ
\bigcirc	neutron	neutral	I.6750 x 10 ⁻²⁴ g I.0087 g/mol	n
0	electron	negative	9.1096 x 10 ⁻³⁸ g 5.486 x 10-4 g/mol	e ⁻

Bohr Model

Atomic Number & Mass Number

Self Test Question

How many neutrons are in the following atom: ¹⁴6 A. 14 **B**. 6 C. 8 D. 20 E. cannot be determined

Tenets of Schrödinger Equation

- electrons have wave properties
- wave equation gives energy of electron at a location
- solutions to wave equation are wave functions (Ψ); a.k.a orbitals
- probability distribution = Ψ^2 (Heisenburg uncertainty principle)

Probability Distribution vs. Boundary Surface

Probability distribution (Ψ^2) ("electron cloud") Boundary Surface (Is orbital) (where the probability = 90-95%)

Wave Function Values: Quantum Numbers

- Shrodinger equation \rightarrow wave function (orbital, Ψ)
- many solutions for Ψ , energies of electrons in atom

quantum number	principle	orbital	magnetic	spin
symbol	n	l	m_{ℓ}	ms
values	1, 2, 3	0, 1, n-1	$(m_{\ell} = -\ell, -\ell + \ell 0 \ell - 1, 1)$	\cdot +1/2 or -1/2
examples/ abbreviations		l=0, s l=1, p l=2, d l=3, f	s: 1 orbital p: three orbital d: five orbitals f: seven orbitals	s 1 1
University of UII	C	CHEM 232, Spring 201	0 Le	Slide 21 cture 1: January 12

s-Orbitals

- spherically symmetric
- possible for $n \ge I$
- I s-orbitals for each value of *n*
- Is = no nodes, 2s = I nodes, 3s = 2 nodes, etc.
- probability of finding selectron at nodal surface = 0
- s-orbital energy increases with increasing nodes (as n increases)

p-Orbitals

- shaped like dumbells
- not possible for $n = I (n \ge 2)$
- 3 p-orbitals for each value of n; they are degenerate (equal in energy)
- wave function changes sign at the nucleus (node)
- probability of finding pelectron at nodal plane = 0
- higher in NRG than s-orbitals of the same shell

Relative Energies of Orbitals

Order of Orbitals from Periodic Table

Electron Configuration: Filling Orbitals

Self Test Question

Which of the following orbitals is *highest* in energy?

hydrogen 1 H			1993	20	10	ſ		10.1	5		(68) (-			² He
1.0079 Rhium	beryllium											1	boron	carbon	nitrogen	oxygen	fluorine	4.0026 noon
3	4												5	6	7	8	9	10
Li	Be												в	C	N	0	F	Ne
6.941 codium	9.0122 magnasium											0	10.811	12.011	14.007 rhoerborue	15.999 eithir	18.998 chloring	20,190
11	12												13	14	15	16	17	18
Na	Ma												AL	Si	P	S	CL	Ar
22.990	24.305												26,982	28.096	30,974	32.065	35.453	39,948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	Ň	Cr	Mn	Fo	Co	Ni	Ciu	Zn	Ga	Go	Ac	So	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.973	58,693	63.546	65.39	69.723	72.61	74 922	78.96	79.904	83.80
rubidium 37	strontium		yttrium 30	zirconium 40	niobium	molybdenum 42	technetium 43	ruthonium	rhodium 45	palladium 46	silver 47	cadmium	indium 49	tin 50	antimony 51	tollurium 52	iodine 53	xenon 54
Dh	C.		v	7-	Mb	Ma	To	D	Dh	Dd	Act	Cd	40	en	Ch	To	1	Val
RD	SI		I	21	UN	OIVI	IC	Ru	KII	FU	Ag	Cu	111	311	30	Ie	126.00	ve
caesium	barium		lutetium	hafnium	tantalum	tungsten	rhenium	osmium	idium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	1	72	73	14	75	76	11	78	79	80	81	82	83	84	85	86
CS	ва	*	LU	HT	Ia	VV	Re	Us	Ir	Ρτ	Au	нg	- 11	PD	BI	РО	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178,49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
×1			Ianthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	torbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70		
^ Lanti	nanide	series	L'a	Co	Dr	Nd	Pm	Sm	Fu	Gd	Th	Dv	Ho	Fr	Tm	Vh		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
** * * *	inide e		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	1	
ACT	iniae se	eries	89	Th	D	92	93	94 D	A	0.00		98	99	F 100	D/L al	102		
			AC	in	Pa	U	ир	PU	Am	Cm	BK	UT	ES	r-m	IVIC	NO		
			227	232.04	231.04	238.03	[237]	[244]	[243]	[247]	247	[251]	[252]	[257]	258	259	1	

A. 3f
B. 3p
C. 2s
D. 3s
E. 2d

CHEM 232, Spring 2010

Slide 27 Lecture 1: January 12

Self Test Question

Which is the correct electron configuration for carbon?

hydrogen] -		50	20	100	1			÷.		11	1					550.0	helium
L Ĥ L																		He
1.0079	handhum												hores	aarbaa	oiteano	000000	Receipe	4.0026
3	4												5	6	7	8	9	10
Li	Be												в	C	N	0	F	Ne
6.941 sodium	9.0122 magnesium											6	10,811 aluminium	12.011 silicon	14.007 thosthorus	15.999 sulfur	18.998 chlorine	20,190 argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Ρ	S	CI	Ar
22.990 potassium	24.305 calcium		scondium	titanium	vanadium	chromium	manganese	iron	robalt	nickel	coppor	zinc	26.982 gallium	28.086 demanium	30.974 prsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 jodine	83.90 xepon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468 caesium	87.62 barium		88.906 Iutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 Iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thailium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnitium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rt	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*L anti	hanida	corioc	lanthanum 57	58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	65	dysprosium 66	67	erblum 68	69	ytterblum 70		
Lanti	nannue	361163	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
* * Act	inide s	eries	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

A. $1s^2$, $2s^8$ B. $1s^2$, $2s^4$ C. $1s^2$, $2s^2$, $2s^2$ D. $1s^2$, $2s^2$, $2p^2$ E. none of the above

CHEM 232 Organic Chemistry I

University of Illinois UIC

Bonding and Molecular Structure

Sections: 2.2, 2.3, 2.4, 1.3, 1.5, 1.6, 1.9 You are responsible for sections 1.2, 1.4, 1.7, 1.10

What is a Covalent Chemical Bond?

valent = bonding covalent = electrons shared between two nuclei

Forces involved:

- electron-electron repulsion
- nucleus-nucleus repulsion
- electron-nucleus attraction

University of

Illinois at Chicago

CHEM 232, Spring 2010

Slide 30 Lecture 1: January 12

Three Models of Bonding

Lewis Model:

- atoms gain, lose or share electrons in order to achieve a closed-shell electron configurations (all orbitals fully occupied)
- closed-shell for row 2 = 8 electrons (octet rule)
- only valence electrons (in outermost shell) are involved in bonding

Three Models of Bonding

Valence Bond Model:

- in-phase overlap of two half-filled orbitals
- in-phase = constructive interference
- increases probability electrons between two nuclei

Three Models of Bonding

Molecular Orbital (MO) Model:

- combine atomic orbitals (AO) of all atoms, then extract molecular orbitals
- number of atomic orbitals in equals the number of molecular orbitals out
- combination possibilites:

University of

Illinois at Chicago

- additive = produces bonding molecular orbitals
- subtractive = produces antibonding molecular orbitals

CHEM 232, Spring 2010

Molecular Orbital Diagram

Self Test Question

Which is the correct Lewis dot structure for CH₄O?

CHEM 232, Spring 2010

Slide 35 Lecture 1: January 12

Structural, Bond-line and Condensed Formulas

Structural	Bond-line	Condensed
 format varies; typically most covalent bonds are drawn out bonds are lines only lone-pair (nonbonding) electrons are drawn as dots 	 only atoms written are those that are <i>not</i> C or H bound to C intersection of two lines is C terminus of a line is -CH₃ group # H atoms is assumed for C chains drawn as "zig-zag" 	 all or most covalent bond lines are omitted groups are separated by parentheses (infers group is attached to carbon with available valency on left or right)
Н Н О Н _{`C} ´ ^C `C`H Н НН Н		CH ₃ CH ₂ CH ₂ CHO
^Н ∼ <mark>О</mark> Н Н、 _С ́С́、С́ Н Н Н Н	OH	CH₃CH(OH)CH₃
Н _Н Н_(́ нн ́ н ^Н _(́ с́ с́ с́ о́ н н ́ нн ́ н 。		(CH ₃) ₂ CHCH ₂ CH ₂ CO ₂ H
University of UIC Ilinois at Chicago	CHEM 232, Spring 2010	Slide 36 Lecture 1: January 12

VSEPR: Quick Review

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compound	Structural formula	Repulsive electron pairs	Arrangement of electron pairs	Molecular shape	Molecular model
Methane (CH ₄)	109.5° H H 109.5° H 109.5° H 109.5°	Carbon has four bonded pairs	Tetrahedral	Tetrahedral	6 6
Water (H ₂ O)	105 H	Oxygen has two bonded pairs + two unshared pairs	Tetrahedral	Bent	4
Ammonia (NH ₃)	107° H	Nitrogen has three bonded pairs + one unshared pair	Tetrahedral	Trigonal pyramidal	6
Boron trifluoride (BF ₈)	·Ĕ.↓ ^{20°} ·Ĕ.→Ĕ:	Boron has three bonded pairs	Trigonal planar	Trigonal planar	8
Formalidehyde (H ₂ CO)	H H C-Ö:	Carbon has two bonded pairs + one double bond, which is counted as one bonded pair	Trigonal planar	Trigonal planar	2
Carbon dioxide (CO ₂)	:Ö <u>₹C</u> #Ö: 180.	Carbon has two double bonds, which are counted as two bonded pairs	Linear	Linear	•••

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 37 Lecture 1: January 12

Self Test Question

Which bond-line drawing correctly represents the following condensed formula?

CH₃CH(OCH₂CH₃)CH₂Br

CHEM 232 Organic Chemistry I

University of Illinois UIC

Functional Groups

Sections: textbook inside cover, Table 4.1 (pg. 140)

Memorize These Functional Groups NOW

functional group: a defined group of atoms with a specific connectivity

- responsible for properties
- •predictable reactivity
- •well-defined nomenclature

Memorizing: "What is the minimum number of atoms needs to define a functional group and in what order are they bonded?" Flashcards!

Table 4.1, page 140

TABLE 4.1 Functional Groups in Some Important Classes of Organic Compounds								
Class	Generalized abbreviation*	Representative example	Name of example [†]					
Alcohol Alkyl halide Amine‡ Epoxide	ROH RCI RNH2 R2C-CR2	CH ₃ CH ₂ OH CH ₃ CH ₂ CI CH ₃ CH ₂ NH ₂ H ₂ C-CH ₂	Ethanol Chloroethane Ethanamine Oxirane					
Ether Nitrile Nitroalkane Sulfide Thiol	ROR RC==N RNO ₂ RSR RSR	CH ₃ CH ₂ OCH ₃ CH ₃ CH ₃ CH ₂ C=N CH ₃ CH ₂ NO ₂ CH ₃ SCH ₃ CH ₃ SCH ₃ SH	Diethyl ether Propanenitrile Nitroethane Dimethyl sulfide Ethanethiol					
Aldehyde	RCH	снасн	Ethanal					
Ketone	RCR	CH3CCH2CH3	2-Butanone					
Carboxylic acid	RCOH	снасон	Ethanoic acid					
Carboxylic acid de	rivatives							
Acyl halide	RCX	CH3CCI	Ethanoyl chloride					
Acid anhydride	RCOCR	снасоссна	Ethanoic anhydride					
Ester	RCOR	снасоснасна	Ethyl ethanoate					
Amide	RCNRg	CH ₃ CNH ₂	Ethanamide					

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

"When more than one R group is present, the groups may be the same or different.

"Most compounds have more than one acceptable name.

The example given is a primary amine (RNH₂). Secondary amines have the general structure R₂NH; tertiary amines are R₂N.

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 40 Lecture 1: January 12

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Next Lecture...

Sections: 1.5, 1.8, 1.10-1.17