CHEM 232 Organic Chemistry I University of Illinois UIC at Chicago

1

Organic Chemistry 1 Lecture 2

Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 12, 2010

Miss the First Lecture? Go to:

http://www.chem.uic.edu/chem232

- 🗹 Syllabus
- Course Policies
- DW & TA office hours
- Lecture Slides (updated each week)
- Other Handouts
- Mannouncements (Course News)
 - Course Calendar

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 2 Lecture 2: January 12 **Self Test Question**

Which of the following ions posses a noble gas electron configuration?

hydrogen 1]		100	ii)	10	1		100	S.		66	170	-			617		helium 2
н																		не
1.0079 Rhium	beryflium	l I										1	boron	carbon	nitrogen	oxygen	fluorine	4.0026 noon
3	4												5	6	7	8	9	10
Li	Be												в	C	N	0	F	Ne
6.941 sodium	9.0122 magnesium											-	10.811 oluminium	12.011	14.007 rhostborus	15.999 suffur	18,998 chiorina	20,190
11	12												13	14	15	16	17	18
Na	Ma												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.096	30.974	32.065	35.453	39.948
19	20		scandium 21	22	23	24	25	26	27	28	29	30 2mc	gallium 31	germanium 32	arsenic 33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidkam	40.078 ctrootium		44.956	47.867	50.942 pichlum	51.996 mohdraum	54.938 Inchronium	55.845 nuthookum	58.933 rbodkem	58.693 colloctum	63.546	65.39 codmium	69.723	72.61	74.922 optimone	78.96 toBurium	79.904 iodino	83.90
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.468 cossium	87.62 harium		88.906 Jutatium	91.224 hatnium	92,906 tantakum	95.94 hungstan	[98] rheokum	101.07 osmkum	102.91	106.42 statigum	107.87	112.41	114.82 thollaum	118.71	121.76 hismuth	127.60 nolonium	126.90 astation	131.29 radion
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	-	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
XI and	h a stat a		lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70		
~ ∟ant	nanide	series	12	Co	Dr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Ho	Fr	Tm	Vh		
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
* * ^ -+	inida -	orioo	actinium	thorium	protactinium 01	uranium 02	neptunium 02	plutonium	americium	curium	berkellum 07	californium	einsteinium	fermium	mendelevium 101	nobelium 102		
ACT	initae s	erres	A .	Th	Do	92	NIm	D	A	Cm	DL	Cf	Eo	Em	Mal	No		
			AC	In	Pa	U	ир	FU	AM	Cm	DK	CI	ES	гm	IVIC	OVI		
			127	252.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[201]	[252]	25/	258	[259]		

A. Mg⁺ B. He⁺ C. Li⁻ D. O⁻ E. Ca²⁺

University of Illinois at Chicago UIC

CHEM 232, Spring 2010

Slide 3 Lecture 2: January 12

Shortcut for Some 1st and 2nd Period Atoms

Atom	Bonds Formed	Group		
H		Ι		
С	4	IV		
Ν	3	V		
Ο	2	VI		
F (X)	I	VII		

• For each additional bond = + I • For each "missing" bond = -I $H_3C^{CH_3}$ $H_3C^{C+CH_3}$ $H_3C^{C+CH_3}$

University of Illinois at Chicago

UIC

CHEM 232, Spring 2010

H₃C

Slide 6 Lecture 2: January 12

Self Test Question

What is the formal charge on the carbon atom in red?

Self Test Question

According to VSEPR, what is the **bond angle** between 2 H-atoms in methane (below)?

A. 105°
B. 109.5°
C. 107°
D. 180°
E. 120°

University of Illinois at Chicago UIC CHEM 232, Spring 2010 Slide 8 Lecture 2: January 12 CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Structure and Bonding: Resonance

Section: 1.8, 1.11 You are responsible for Section 1.10.

The Contradictory Case of Ozone

Lewis Structure suggests ozone is *non-symmetrical*

electrostatic potential map

red = negative blue = positive

Microwave spectroscopy shows that ozone is *symmetrical* (C_{2v})

Curious Case of Benzene

Curious Case of Benzene

Resonance Provides the Solution

Problems:

- 1. Lewis structures fail to describe actual atom electron densities for molecules with more than one possible electron distribution.
- 2. Lewis formulas show electrons as *localized*; they either belong to a single atom (lone pair) or are shared between two atoms (covalent bond).
- 3. Electrons are not always *localized*; delocalization over several nuclei leads to stabilization (lower energy).

Physical Proof of Resonance in Amides

13

The second amide resonance contributor suggests that amide C-N bond has partial double bond character – this has estimated to be ~40% under standard conditions. The degree to which the ionic structure contributes to the description of amides also depends on the environment surrounding the amide: the double-bonded resonance form contributes less in hydrophobic environments because the charge separation is less stabilized in non-polar solvents.

A Question of Arrows

Equilibrium between distinct species

Reaction from one species to another

"Movement" of electrons from donor to acceptor

Indicates that 2 species are contributing resonance structures

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 14 Lecture 2: January 12

Resonance

Solutions:

- Actual molecule is considered a resonance hybrid (weighted average) of contributing Lewis structures. (Note: double headed arrow does NOT indicate interconversion.)
- 2. Dashed-line notation is sometimes used to indicate partial bonds.
- 3. Not all structures contribute equally.

Rules of Resonance

You are responsible for the "Rules of Resonance" (Pg. 27)

How to draw resonance structures

Illinois at Chicago

- How to distinguish between a resonance structure and a unique electron configuration
- How to predict the major contributing structure

CHEM 232, Spring 2010 Lecture 2: January 12

Another Way to Think About Resonance Contributors

An analogy that is occasionally employed to clarify the concept of resonance contributors goes as follows: an explorer returns to his homeland from Africa and wants to describe to his countrymen the rhinoceroses that he has observed. He might describe it as a cross between a unicorn and a dragon. Unicorns and dragons do not even exist in real life and yet for the purposes of describing and understanding a rhino, it might be useful to represent it as either a unicorn or as a dragon.

Curved Arrow Notation

resonance: electrons in a covalent bond moving out to an atom

bond making: lone

to another atom

resonance: lone pair of electrons moving in between two atoms to form a new covalent bond

 $H_{3C} \xrightarrow{O} H \longrightarrow H_{3C} \xrightarrow{O} H^{+}$ electrons in a bond leaving to most

bond breaking:

electronegative atom

University of Illinois at Chicago	CHEM 232, Spring 2010	Slide 18 Lecture 2: January 12
		1

Preview: Curved Arrows in Reaction Mechanisms

bond breaking

Another Way of Viewing Arrow-Pushing

Remember that curly arrows originate from e-donors (nucleophiles) and terminate at e-acceptors (electrophiles)

From an M.O. perspective curly arrows originate from filled orbitals (nucleophiles) and terminate at empty orbitals (electrophiles) - bonds are formed from the mixing of filled and empty orbitals

University of Illinois at Chicago JIC

CHEM 232, Spring 2010

Slide 20 Lecture 2: January 12

Molecular Orbital Diagram

Self Test Question

Which of the following is *not* descriptive of resonance as it pertains to organic chemistry?

- A. stabilization of negative charge
- B. movement of atoms
- C. delocalization of electrons
- D. involves bond-breaking
- E. involves bond-making

University of Illinois at Chicago

UIC

CHEM 232, Spring 2010

Slide 22 Lecture 2: January 12

University of Illinois UIC at Chicago

How Structure Affects Physical Properties: Acid Strength

Sections: 1.12-1.16 You are responsible for Section 1.17

Arrhenius Acids and Bases

Acid: Dissociates to provide protons (H ⁺) in water. $H \stackrel{\frown}{\rightharpoonup} A \iff H^+ + :A^-$ AcidAcidProtonAnion	strong acid: ionizes completely weak acid: does not ionize completely
Base: Dissociates to provide hydroxide (OH ⁻) in water. $M \stackrel{\frown}{=} \overset{\bigcirc}{=} -H \Longrightarrow M^{+} + \overline{:} \overset{\bigcirc}{=} -H$ Base Cation Hydroxide ion	strong base: ionizes completely weak base: does not ionize completely
University of UIC CHEM 232, Spring 20	Slide 24

According to Arrhenius, an acid is defined as a substance, which when dissolved in water, increases the concentration of protons (H+): a prime examples of such as acid include HCl and sulfuric acid. An Arrhenius base is any substance, which when dissolved in water, tends to increase the amount of OH. These definitions are limited since they are restricted to water as the solvent.

Brønsted-Lowry Acids & Bases

In 1923, Johannes Bronsted and Thomas Lowry independently proposed that an acid could be defined as a substance that is capable of donating a hydrogen ion, or proton, while a base is any molecule that can accept a hydrogen ion. In this definition, bases and acids necessarily occur as conjugate partners.

Molecular Orbital Picture

Water Can Act as a Base or Acid Under Brønsted-Lowry Definition

Acid Strength is Measured by the Acid Dissociation Constant (pK_a)

Note that the value of *K* reflects the relative thermodyamic stability of acid and anion

pKa Scale

Structure Affects Acid Strength

I. Electronegativity of H-Donating Atom

- dominant effect for same periods (rows)
- more electronegative conjugate base = more stable conjugate base = Ka lies further to right
- Alternative reasoning: H of conjugate acid (HA) becomes more positive with increasing electronegativity of A

Structure Affects Acid Strength

I. Electronegativity (cont.)

- inductive effect of electronegative substituents also stabilizes conj. base
- the more electronegative the group, the greater the stabilization
- the closer the electronegative group, the greater the inductive effect
- inductive effect = structural effects that are transmitted through bonds

Self Test Question

Which of the following carboxylic acids (- CO_2H) is the most acidic (lowest p K_a)?

Structure Affects Acid Strength

2. Bond Strength

- dominant effect for same groups (columns)
- Similar sized bonding orbitals = better overlap = stronger bond
- Stronger H–A bond = weaker acid

Self Test Question

Which of the following is the strongest acid?

Structure Affects Acid Strength

3. Resonance (delocalization of e⁻s in conj. base):

- delocalization of e⁻s in conj. base = increased stability (lower NRG) of conjugate base
- more stable conj. base = larger K_a = smaller pK_a = stronger acid

Acid-Base Equilibria: Determining the Direction of Acid-Base Reactions

You must identify the ACID on each side of the equilibrium: • remember: $p = -log_{10}$ $pK_{eq} = pK_a$ (acid left) - pK_a (acid right) this equation works for any acid- $K_{eq} = 10^{-[pKa (acid left) - pKa (acid right)]}$ base reaction; doesn't matter which way equilibrium is written **Example:** K_{eq} phenoxide anion phenol hydrogen carbonate carbonic acid $(pK_a = 10)$ $(pK_a = 10.2)$ $(pK_a = NA)$ $(pK_a = 6.4)$ acid base base acid $K_{\rm eq} = 10^{-[10 - 6.4]}$ -[3.6] = 2.5 x 10⁻⁴ since $K_{eq} < 1$, then equilibrium lies to the left

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 36 Lecture 2: January 12

Finally, What About Strengths of Bases?

Solution:		H ^H	
 Determine which conjugate acid of each base is the weakest. The weaker the conjugate acid 		N—Н Н	N ₊ H
the stronger the conjugate base.	pK _a	Ammonium ion 9.3 weaker acid	Pyridinium ion 5.2 stronger acid

University of	CHEM 232 Spring 2010	Slide 37	
Illinois at Chicago		Lecture 2: January 12	

Molecule of the Week...α-Amanitin Be Careful What You Eat (and Who You Marry)!

Amanita phalloides

Read more about the death of Claudius.....

α-Amanitin (red) bound to RNA polymerase II

Amanita caesarea

University of Illinois at Chicago UIC CHEM 232, Spring 2010 Slide 38 Lecture 2: January 12

Tiberius Claudius Caesar Augustus Germanicus (10 B.C.–A.D. 54)

38

 α -Amanitin, a cyclic peptide comprised of eight amino acids, is widely regarded as among the most lethal of all natural products. This notorious toxin is isolated from the fungus *Amanita phalloides*, more commonly known as the Death Cap, and has an oral LD50 of 0.1 mg/kg. In light of this toadstool's similarity to a number of edible mushrooms, including the highly prized *Amanita caesarea*, it has been involved in the majority of human deaths from mushroom poisoning. Several historical figures are suspected victims of α -amanitin, including the Roman Emperor Claudius, who may have been poisoned by his wife Julia Agrippina. The Roman historian,

Reminder

Quiz next week in discussion section.

Covers Carey Chapter 1

Functional groups will not be examined (yet)

CHEM 232 Organic Chemistry I University of Illinois UIC

Next Lecture...

Sections: 2.1-2.11