Lecture 14 Organic Chemistry 1

Prof. Duncan J. Wardrop 02/09/2010

Regioselectivity & Stereoselectivity of Dehydration

Section 5.10-5.11

Self Test Question

What is the product(s) of the following reaction?

Types of Selectivity in Organic Chemistry

There are three forms of selectivity to consider

- Chemoselectivity: which functional group will react
- Regioselectivity: where it will react
- Stereoselectivity: how it will react with regards to stereochemical outcome

... for each transformation, always question which of these are factors are at play.

Regioselectivity of Elimination

Regioselectivity: Where Will It React?

Preferential reaction at one site of a single functional group over other sites that could undergo the same reaction

CHEM 232 Definition, 2009

$$H_3C$$
 CH_3
 CH_3

Regioselectivity of Elimination

Regioselectivity: Where Will It React?

Preferential reaction at one site of a single functional group over other sites that could undergo the same reaction

CHEM 232 Definition, 2009

$$H_{\beta}$$
 H_{β}
 H_{β}
 H_{β}

2 different leaving group/H_β relationships

Greek Lettering & Elimination Reactions

Nomenclature

The α -carbon is the one to which the leaving group is initially bonded, and the carbon chain from this may be labelled β (beta), γ (gamma), δ (delta) etc, following Greek alphabet. Use primed letters for chains branching at α -carbon

$$H_3$$
C H_2 H_2 H_3 C H_3 H_4 H_5 H_5 H_6 H_6 H_8

Regioselectivity of Elimination Zaitsev Rule

 CH_3

Dehydration is Stereoselective

Stereoselectivity: *How* It Will React With Regard to Stereochemical Outcome?

Preferential formation of one stereoisomer when two or more stereoisomers are potential products of a given chemical reaction

CHEM 232 Definition, 2009

trans alkenes are formed in greater amounts in dehydration reactions compared to cis alkenes

Considering Stereo & Regioselectivity

Combine Zaitsev's Rule and observations about stereoselectivity to predict the major products of dehydration (elimination)

University of Illinois at Chicago

Slide 10 Lecture 10: February 11

Self Test Question

What is the <u>major</u> product expected for the reaction scheme below?

$$\frac{\text{H}_2\text{SO}_4}{\text{80 °C}}$$
?

E1 & E2 Mechanisms of Alcohol Dehydration

Section: 5.12

Organic Mechanisms (S_N1)

University of UIC
Illinois at Chicago

CHEM 232, Spring 2010

Slide 13 Lecture 8: February 4

curved arrows: show direction of electron flow in each bond making and bond breaking
elementary steps: involves bond making/breaking that proceeds through one transition state
intermediates (i.e. carbocations, oxonium ions)

Remember Curved Arrow Notation?

curved arrows show the movement of electrons; never atoms

resonance: electrons in a covalent bond moving out to an atom

bond making: lone pair of electrons forming a new bond to another atom

resonance: lone pair of electrons moving in between two atoms to form a new covalent bond

bond breaking:

electronegative atom

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 14 Lecture 10: February 11

Mechanism of Dehydration (E1)

Step One

Proton Transfer (Protonation)

this is an acid-base reaction; product is an alkoxonium ion

oxonium ion is an intermediate in the overall reaction

fast & reversible

$$+ H = O = S = OH$$
 $+ H = O = S = OH$
 $+ H = O = S = OH$

alkyloxonium ion

University of UIC
Illinois at Chicago

CHEM 232, Spring 2010

Slide 15 Lecture 8: February 4

exothermic and fast (proton transfer is among the fastest processes in organic chemistry) rate of individual step = $k \times [alcohol] \times [HX]$; two reactants = bimolecular (2nd order)

Mechanism of Dehydration (E1)

Step Two

Dissociation

University of UIC
Illinois at Chicago

CHEM 232, Spring 2010

Slide 16 Lecture 8: February 4

slowest (rate determining) step in entire mechanism:

slowest (rate determining) step in entire mechanism; endothermic

rate=k[oxonium ion]; one reactant = unimolecular (1st order)

Mechanism of Dehydration (E1)

Step Three

Carbocation Capture \(\beta \text{-Deprotonation!} \)

University of UIC
Illinois at Chicago

CHEM 232, Spring 2010

Slide 17 Lecture 8: February 4

exothermic and fast; neutral products much lower in NRG small activation energy; negative charge to positive charge transition state looks most like carbocation since they are closest in energy rate = k x [carbocation][halide]; two reactants = bimolecular

Hughes-Ingold Nomenclature

overall reaction = β -Elimination rate determining step (RDS) involves on species = unimolecular rate = k[alkyl oxonium ion] = first order

University of Illinois at Chicago

Each Step of E1 Mechanism is Reversible

If all steps in E1 are reversible, what drives the reaction forward?

Alkenes Isolated from Dehydration Reactions by Distillation

- alkenes have <u>much</u> lower boiling points than alcohols
- alcohols have higher boiling points (b.p.) because of larger van der Waals forces, including strong hydrogen-bonding
- by removing alkenes through distillation (boiling), equilibrium is shifted toward products (<u>LeChatlier Principle</u>) until no more reactants remain

Why Can't Hydrogen Halides Be Used for Elimination Reactions?

Nucleophilic addition of chloride (Cl⁻) to a carbocation is not reversible

Reactivity Explained

Bimolecular Substitution - S_N2 Mechanism (from Lecture 8)

H₃C
$$\stackrel{\text{fast}}{\longrightarrow}$$
 H₃C $\stackrel{\text{H}}{\longrightarrow}$ H₄C $\stackrel{\text{H}}{\longrightarrow}$ H₅C $\stackrel{\text{H}}{\longrightarrow}$ H₆C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₈C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₈C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₈C $\stackrel{\text{H}}{\longrightarrow}$ H₇C $\stackrel{\text{H}}{\longrightarrow}$ H₈C $\stackrel{\text{H}}{\longrightarrow}$ H₉C $\stackrel{$

- C-O bond breaks at the same time the nucleophile (Br) forms the C-X bond
- RDS is nucleophilic attack; bimolecular, therefore Ingold notation = S_N2
- fewer steps does not mean faster reaction

Dehydration of Primary Alcohols Proceeds via E2 Mechanism

H₃C
$$\stackrel{\leftarrow}{\circ}$$
 $\stackrel{\leftarrow}{\circ}$ $\stackrel{\leftarrow}{\circ}$

- C-O bond breaks at the same time the nucleophile (Br) forms the C-X bond
- RDS is nucleophilic attack; bimolecular, therefore Ingold notation = $S_{N}2$
- fewer steps does not mean faster reaction

Rearrangement During Alcohol Dehydration

Section 5.13

Rearrangements

only β-hydrogens!

- arrangement (connectivity) of the carbons atoms in the some of the products is <u>different</u> than in the reactant
- change in connectivity = rearrangement
- rearrangement takes place at the carbocation intermediate

Rearrangements via 1,2-Methyl Shift

- methyl group migrates to <u>adjacent</u> (1,2) carbocation <u>with</u> its electrons
- driving force is generation of a more stable carbocation intermediate
- β-elimination can then take place from both carbocation intermediates
- the most stable carbocation will give rise to the major products

Example of 1,2-Methyl Shift

Valence Orbital Picture of Rearrangement

University of Illinois at Chicago

Slide 29
Lecture 10: February 11

Rearrangements: 1,2-Hydride Shift

- hydride (hydrogen with the electrons in the sigma bond) migrates by the same mechanism as methyl
- formation of more stable carbocation drives rearrangement; multiple migrations are possible

Hydride Shifts in 1° Alcohols Do Not Proceed via Primary Carbocations

- no carbocation intermediate is possible when the alcohol is primary (mechanism is E2; deprotonation concerted with C-O breakage)
- primary carbocation are too high in energy to be viable intermediates

Hydride Shift in 1º Alcohol

- therefore, hydride migrates at the same time, as water leaves (C-O bond heterolysis) from alkyl oxonium ion intermediate
- concerted process: σ -bond cleavage simultaneous with σ -bond formation

Dehydrohalogenation

Sections: 5.14-5.16, 5.18

You are responsible for sections 5.17 & 5.18

Dehydrohalogenation An Elimination Process

Summary of β -elimination (1,2-elimination) Reactions

Brønsted Bases Mediate Dehydrohalogenation

- requires strong bases
- most common are conjugate bases of alcohols (alkoxides)
- solvent (liquid the reaction is conducted in) is generally the conjugate acid of the base being used

Generation of Alkoxide Bases

$$CH_3OH$$

 $pK_a = 15.2$

sodium methoxide

NaOCH₃

$$pK_a = 16$$

sodium ethoxide

NaOCH₂CH₃

$$H_3C$$
 H_3C
 OH
 H_3C

$$pK_a = 18$$

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

potassium tert-butoxide

KOC(CH₃)₃

Dimethyl Sulfoxide as Solvent

CH₃(CH₂)₁₅CH₂CH₂Cl
$$\xrightarrow{\text{KOC(CH}_3)_3}$$
 CH₃(CH₂)₁₅CH=CH₂
1-Chlorooctadecane 1-Octadecene (86%)

- common solvent for dehydrohalogenations
- very polar; readily dissolves large ionic organic molecules such as KOC(CH₃)₃
- relatively non-toxic; safe
- does not participate in the reaction

Dehydrohalogenation is Regioselective

- dehydrohalogenation is regioselective
- Zaitsev's Rule is still followed
- most substituted alkenes are preferred

Dehydrogenation is Stereoselective

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$Br$$

$$5-Bromononane$$

$$\downarrow KOCH_{2}CH_{3}, CH_{3}CH_{2}OH$$

$$CH_{3}CH_{2}CH_{2}$$

$$CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}$$

$$H$$

$$H$$

$$C=C$$

$$H$$

$$H$$

$$CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}$$

$$CH_{3}CH_{2}CH_{2}$$

$$CH_{3}CH_{2}CH_{2}$$

$$CH_{3}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{3}$$

$$CH_{3}CH_{3}CH_{3}$$

$$CH_{3}CH_{3}CH_{3}CH_{3}$$

$$CH_{3}CH_{3}CH_{3}CH_{3}$$

$$CH_{3}CH_{3}C$$

- dehydrohalogenation is stereoselective
- trans (E) alkenes are preferred

E2 Mechanism for Dehydrohalogenation

- E2: Elimination, 2nd order (bimolecular)
- dehydrohalogenation is second order (bimolecular)
- two molecules involved in RDS (halide & base)
- rate = k[alkyl halide][base]
- concerted process

Consider Structure of E2 Transition State

Observations

Four key elements in transitions state:

- a. B-H σ -bond making
- b. C-H σ -bond breaking
- c. C-C π -bond making
- d. C-X σ -bond breaking

All four processes are concerted (same time)

Leaving Group Ability & Reactivity

- X orbital size increases down group
- C-X bond strength decreases down group
- weaker C-X bond = breaks faster = faster reaction

Transition States of E2 Eliminations

- π -bond is forms from the 2 σ -bonds being broken
- formation of a π -bond requires that the C-H σ -bond and the C-X σ -bond be planar (parallel)
- two conformations satisfy this stereoelectronic requirement

anti periplanar (anti coplanar)

syn periplanar (syn coplanar)

E2 Elimination From Cyclohexanes

Observation: the *cis* isomer undergoes dehydrogenation faster than the *trans* isomer.

Origin of

cis-4-tert-butylcyclohexyl bromide

trans-4-tert-butylcyclohexyl bromide

$$\begin{array}{c} H \\ H \\ H \\ H \end{array}$$

For E2 elimination in cyclohexanes, both C-H and C-X bonds must be *axial*. In case above, only the *cis* isomer satisfies this requirement.

Why is E2 elimination fastest when the adjacent groups are anti coplanar? There are two possible rationales....

Rationale One (Best)

Antiperiplanar

H-----

Synperiplanar

- antiperiplanar conformer is favored
- best orbital overlap between C-H σ (bonding) orbitals and C-X σ^* (antibonding) orbitals
- better overlap = weaker C-X bond = faster reaction
- <u>stereoelectronic effect</u> = preference for one spatial arrangement of electrons or orbitals over another arrangement

Rationale Two

Synperiplanar

- eclipsed conformation
- all adjacent bonds eclipsed

Antiperiplanar

- anti, staggered conformation
- all adjacent bonds gauche
- antiperiplanar conformer favored
- lowest energy transition state conformation is anti
- lower transition states energy = faster reaction

Self Test Question

Which cyclohexyl chloride undergoes elimination most rapidly upon treatment with sodium ethoxide?

Hint: Draw the most stable chair conformation of each.

$$A \qquad = \qquad \stackrel{H}{\longrightarrow} \qquad \stackrel{H}{\longrightarrow$$

$$B \qquad \Longrightarrow \qquad \bigoplus_{H} \qquad \bigoplus_{C \mid } \qquad \bigoplus_{H} \qquad \bigoplus_{H} \qquad \bigoplus_{C \mid } \qquad \bigoplus_{C \mid } \qquad \bigoplus_{H} \qquad \bigoplus_{C \mid } \qquad \bigoplus_{C \mid$$

Compound A Must Undergo Ring Inversion Before E2 Elimination

equatorial chloride is anti-periplanar to only **C-C bonds** and cannot be eliminated by E2 mechanism

axial chloride is antiperiplanar to only **C-H bonds** so E2 elimination is possible

Next Lecture...

Chapter 6: Sections 6.1-6.11

Exam One

- Monday, February 15
- 6:00-7:15 p.m.
- 250 SES
- Chapters 1-5 (everything!)
- Makeup Exam: Monday, Feb. 22, time t.b.a.

<u>Makeup policy:</u> There are no makeup exams without **prior** approval. Only students showing proof of a class conflict will have the option to take a makeup exam. To be added to the makeup list, you must email me no later than Friday, Feb. 12.

Exam One Grade Distribution

- Q1. Ranking (50 points)
- Q2. Predict the Products (50 points)
- Q3. Arrow-Pushing Mechanism (50 points)
- Q4. Nomenclature (20 points)
- Q5. Drawing & Conformational Analysis (50 points)
- Q6. Functional Groups (30 points)

Exam One Policies

- Non-scientific calculators allowed only
- No cell phones, ipods or others electronic devices
- No molecular models
- Periodic table will be provided
- Seating will be assigned
- Bring Your I.D.