# Lecture 13 Organic Chemistry 1

**Professor Duncan Wardrop** 

February 23, 2010

# Spectroscopy & Spectrometry

Chapter 13

# Introduction to Analytical Methods

Sections: 13.1-13.2

#### Spectroscopy vs. Spectrometry

#### **Spectroscopy**

study of the interaction of electromagnetic radiation with matter; typically involves the absorption of electromagnetic radiation

#### **Spectrometry**

evaluation of molecular identity and/or properties that does not involve interaction with electromagnetic radiation

## Spectroscopic Methods

| Method                                          | Measurement/Application                                                                                                                                                         |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Infrared<br>Spectroscopy                        | <ul> <li>vibrational states: stretching and bending frequencies of covalent bonds that contain a dipole moment</li> <li>functional group determination</li> </ul>               |  |
| Ultraviolet-Visible<br>(UV-vis)<br>Spectroscopy | <ul> <li><u>electronic states:</u> energy associated with promotion of an electron in a ground state to an exited state</li> <li>chromophore determination</li> </ul>           |  |
| Mass<br>Spectro <u>metry</u>                    | <ul> <li>molecular weight: of parent molecule and fragments produced by bombardment with "free" electrons</li> <li>fragment and isotope determination</li> </ul>                |  |
| Nuclear Magnetic<br>Resonance<br>Spectroscopy   | <ul> <li>nuclear spin states: energy associated with spin states of nuclei in the presence of a magnetic field</li> <li>determine structural groups and connectivity</li> </ul> |  |

# Absorption/Transmission Spectroscopy: Simplified Principles





#### **Electromagnetic Spectrum**



#### **Electromagnetic Radiation**

- propagated at the speed of light (3 x10<sup>8</sup> m/s)
- has properties of particles and waves
- energy is directly proportional to frequency
- energy is indirectly proportional to wavelength

$$E = hv$$
  $c = v\lambda$ 



### **Quantized Energy States**



Increasing Energy

| Types of<br>States | Energy<br>Range (λ)       | Spectroscopic<br>Method |  |
|--------------------|---------------------------|-------------------------|--|
| nuclear spin       | radiofrequency<br>1-10 m  | NMR                     |  |
| rotational         | microwave<br>10-100 cm    | Microwave               |  |
| vibrational        | infrared<br>0.78-1000 μm  | IR                      |  |
| electronic         | ultraviolet<br>800-200 nm | UV-vis                  |  |

## Infrared Spectroscopy

Sections: 13.20-13.22

### **Principles of Infrared Spectroscopy**

IR: Measures the vibrational energy associated with stretching or bending bonds that contain a dipole moment ( $\mu$ ).

#### Stretching



#### **Bending**



## **Stretching & Bending Vibrations**





University of Illinois at Chicago

Slide 11 Lecture 13: February 23

### Dipole Moment



In order to measure the stretching or bending frequency of a covalent bond, it must have a dipole moment ( $\mu$ ).

#### Hooke's Law: Bonds are Like Springs

Vibrational Energy Depends *both* on bond strength (spring force constant) and the mass of atoms (objects) attached

$$\widetilde{V} = k \sqrt{f^* \frac{(m_1 + m_2)}{(m_1 * m_2)}}$$

 $\tilde{v}$  = vibrational "frequency" in wavenumbers (cm<sup>-1</sup>)

 $k = \text{constant} (1/2\pi c)$ 

*f* = *force constant; strength of bond (spring)* 

 $m_1$ ,  $m_2$  = masses (not molecular weights) of attached atoms

#### Trends:

↑ mass = ↓ frequency

### **Spring Analogy**



smaller mass =
higher frequency =
higher energy



stronger spring (bond) = higher frequency = higher energy

#### Wavenumber ( $\bar{v}$ ) and Infrared Scale

$$\bar{v} \text{ (cm}^{-1}) = \frac{I}{\lambda \text{ (cm)}}$$

higher wavenumber  $(\bar{\upsilon})$  = lower wavenumber  $(\bar{\upsilon})$  = higher frequency  $(\upsilon)$  = lower wavelength  $(\lambda)$  = higher energy (E) lower energy (E)



wavenumber = reciprocal of the wavelength measured in centimeters (cm); directly proportional to frequency

## Infrared Spectrum



#### **Characteristic Stretches - Alkanes**





- 2 = sp<sup>3</sup> C-H bond stretching motion; general absorb around 2850-2950 cm<sup>-1</sup>
- 1 = C-H rocking motion when C atom is part of a methyl group (-CH<sub>3</sub>); 1370-1350 cm<sup>-1</sup>
- 3 = scissor motion of -CH₃
   hydrogen atoms; 1470-1450
   cm⁻¹
- 1300-900 cm<sup>-1</sup> = fingerprint region for organic molecules; typically complex and unhelpful

University of Illinois at Chicago

#### **Characteristic Stretches - Alkenes**





- 5: notice sp<sup>2</sup> C-H (~3100 cm<sup>-1</sup>) at higher frequency than sp3 C-H (~2950 cm<sup>-1</sup>)
- more s-character = stronger bond = higher frequency
- 4: also, C=C bond at higher frequency than C-C bond;
   ~1600 cm<sup>-1</sup>

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 18 Lecture 13: February 23

#### **Characteristic Stretches - Alkynes**





- 7: notice sp C-H (~3300 cm<sup>-1</sup>) at higher frequency than sp<sup>2</sup> C-H (~3100 cm<sup>-1</sup>), which was higher than sp<sup>3</sup> C-H (~2950 cm<sup>-1</sup>)
- 6: C≡C stretch is very weak because carbons have almost identical electronegativities = small dipole moment

University of Illinois at Chicago

Slide 19 Lecture 13: February 23

#### **Characteristic Stretches - Alcohols**





- 9: hydroxyl groups (-OH) exhibit strong <u>broad</u> bands; ~3300 cm<sup>-1</sup>
- broad peak is a result of hydrogen bonding; width depends on solution concentration
- lower concentration = less hydrogen bonding = more narrow -OH band

University of Illinois at Chicago

Slide 20

#### **Characteristic Stretches - NItriles**





- 8: nitriles ~2200 cm<sup>-1</sup>
- nitriles (C=N) absorb a greater magnitude of energy than alkynes (C=C) because they have a larger dipole moment
- larger dipole moment = more intense peak
- size of the dipole does NOT affect frequency of vibration

University of Illinois at Chicago

Slide 21

Lecture 13: February 23

#### Example: Ester, Amine, Benzene





- I0: strong carbonyl (C=O) band ~1700 cm<sup>-1</sup>
- II: amines; secondary amines (-NH) give one band; primary amines (-NH<sub>2</sub>) gives two bands
- 4: several alkene bands
   ~1600 cm<sup>-1</sup> for benzene ring
   C=C double bonds

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 22 Lecture 13: February 23

#### **Characteristic Stretches - Carboxylic Acids**





- 10: strong carbonyl (C=O)
   band ~1700 cm<sup>-1</sup>
- 9: hydroxyl band (-OH) can be less intense and sharper in carboxylic acids
- 4: weak alkene band (C=C) since small dipole moment

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 23 Lecture 13: February 23

#### **Characteristic Stretches - Aldehydes**



University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 24 Lecture 13: February 23

# Which molecule is represented by the IR below?



A.a

B. b

C.c



# Which molecule is represented by the IR below?



A.a

B. b

C.c



# Which molecule is represented by the IR below?



A.a

B. b

C.c

# Which molecule is represented by the IR below?



A.a

B. b

C.c



# Which molecule is represented by the IR below?



A.a

B. b

C.c



# Which molecule is represented by the IR below?



A.a

B. b

C.c

 $\mathsf{D}.\mathsf{d}$ 



## Example



University of Illinois at Chicago

Slide 31 Lecture 13: February 23

# Ultraviolet-Visible Spectroscopy

Section: 13.23

This topic will be covered in Chapter 10.

#### Next Lecture...

Chapter 13: Sections 13.23,13.24, 13.25

Problem Set 1 has been posted

## Quiz This Week...

Chapter 5 & 6