Lecture 14 Organic Chemistry 1

Professor Duncan Wardrop

February 25, 2010

Mass Spectrometry

Sections: 13.24-13.25

Spectroscopy vs. Spectrometry

Spectroscopy

study of the interaction of electromagnetic radiation with matter; typically involves the absorption of electromagnetic radiation

Spectrometry

evaluation of molecular identity and/or properties that does not involve interaction with electromagnetic radiation

Self Test Question

Which molecule corresponds to the IR spectrum below?

A. a
B. b

C.c

D.d

E. e

Self Test Question

Which covalent bond, highlighted in bold (red) in the molecules below, would not be expected to exhibit an IR stretching band?

 $H_3C-C\equiv N$

B

 $H_3C-C\equiv N$ H-C-H

 $H_3C-C\equiv C-CH_3$

University of Illinois at Chicago

Mass Spectrometry

Section 13.24

You are responsible for section 13.25!

Mass Spectrometry

Primary Applications:

- I. Determine molecular mass.
- 2. Establish fragmentation patterns, which can be indexed in a database.
- 3. Determine presence of some heteroatoms.
- 4. Determine the exact mass of molecules.

Mass Spectrometer Schematic

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 8 Lecture 14: February 25

Formation of Radical Cations

$$A:B + e^{-} \longrightarrow A \cdot B + 2e^{-}$$
Molecule Electron Cation radical Two electrons

- organic molecules are bombarded with 70-eV electrons
- causes organic molecule to lose one electron from a covalent bond
- organic molecule is then charged
- the mass of charged species is determined by a mass spectrometer

Molecular Ion Peaks

- molecular ion peak = highest m/z (mass/charge) peak
- since charge (z) is usually I, molecular ion peak = molecular mass
- molecular ion peak does not have to have relative intensity of 100%
- most intense peak = base peak
- relative intensity = height of peak ÷ base peak

Common Fragmentation Pattern for Alkanes

Common Fragmentation Pattern for Alkyl Benzenes

benzylic carbocation

benzylic carbocation stabilized by <u>resonance</u> = common fragment in MS

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 14

Lecture 14: February 25

Since fragmentation patterns should be the same for identical molecules, they can be saved in a database and matched to unknowns later. CSI anyone?

Isotopic Clusters: Carbon and Hydrogen

Isotopic Clusters: Carbon and Hydrogen

$$^{1}H$$
 ^{1}H
 1

Probability of M+I

$$6 \times 1.1\% = 6.6\%$$
 of 13 C

$$6 \times 0.015\% = 0.1\%$$
 of ${}^{2}H$

Total Probablility = 6.7%

Natural Abundance of Isotopes	
Isotope	Abundance
13 C	1.10%
¹² C	98.90%
² H (D)	0.015%
¹H	99.985%

- mass spectrometry is sensitive enough to resolve exact masses of isotopes
- intensity of the peaks corresponds to natural abundance of each isotope
- probability = number of atoms in molecule x natural abundance

Isotopic Clusters: Chlorine & Bromine

Natural Abundance of Isotopes	
Isotope	Abundance
³⁵ CI	75.77%
³⁷ CI	24.23%
⁷⁹ Br	50.69%
⁸¹ Br	49.31%

- Chlorine: M:(M+2) ~ 3:1
- Bromine: M:(M+2) ~ I:I
- probability = number of atoms in molecule x natural abundance

Spectroscopic Methods

Method	Measurement/Application
Infrared Spectroscopy	 vibrational states: stretching and bending frequencies of covalent bonds that contain a dipole moment functional group determination
Ultraviolet-Visible (UV-vis)Spectroscopy	 <u>electronic states</u>: energy associated with promotion of an electron in a ground state to an exited state chromophore determination
Mass Spectro <u>metry</u>	 molecular weight: of parent molecule and fragments produced by bombardment with "free" electrons fragment and isotope determination
Nuclear Magnetic Resonance Spectroscopy	 <u>nuclear spin states</u>: energy associated with spin states of nuclei in the prescence of a magnetic field determine structural groups and connectivity

Next Lecture...

Chapter 7: Sections 7.1-7.7

Bring your models!