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Nucleophilicity

more nucleophilic = faster SN2 reaction

TABLE X' Nucleophilicity of Some Common Nucleophiles

Reactivity class Nucleophile Relative reactivity*

Very good nucleophiles I-, HS™, RS~ = 11(0)
Good nucleophiles Br, HO", RO, CN~, N5~ 10*
Fair nucleophiles NHs, CI~, F~, RCO,~ 10°
Weak nucleophiles H,O0, ROH 1
Very weak nucleophiles RCO,H 1072

|. for identical atoms, more basic = more nucleophilic

H;C—-0O: is more nucleophilic than
°e (stronger base = stronger nuc) Ay
CH30H CH5CO,H
(conjugate acid) (conjugate acid)
pKa =15.2 pKa = 4.7
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Nucleophilicity

more nucleophilic = faster SN2 reaction

TABLE X' Nucleophilicity of Some Common Nucleophiles

Reactivity class Nucleophile Relative reactivity*

Very good nucleophiles I-, HS™, RS~ = 11(0)
Good nucleophiles Br, HO", RO, CN~, N5~ 10*
Fair nucleophiles NHs, CI~, F~, RCO,~ 10°
Weak nucleophiles H,O0, ROH 1
Very weak nucleophiles RCO,H 1072

2. For atoms in the same row and with same charge, nucleophilicity
decreases left to right

H3C—NH, is more nucleophilic than H;C—OH
(stronger base = stronger nuc) °e
CH3NH3* CH3OH,*
(conjugate acid) (conjugate acid)
pKa =10.7 pKa = -2
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Nucleophilicity

more nucleophilic = faster SN2 reaction

TABLE X' Nucleophilicity of Some Common Nucleophiles

Reactivity class Nucleophile Relative reactivity*

Very good nucleophiles I-, HS™, RS~ = 11(0)
Good nucleophiles Br, HO", RO, CN~, N5~ 10*
Fair nucleophiles NHs, CI~, F~, RCO,~ 10°
Weak nucleophiles H,O0, ROH 1
Very weak nucleophiles RCO,H 1072

3. Nucleophilicity does not follow basicity down a column;
nucleophilicity increase down a column

H3C—SH is more nucleophilic than H3C-OH

M [ is more nucleophilic than :!3.r:
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Explanation for Halide Nucleophilicity

small anions =
high charge to size ratio =

ion-dipole forces between
halide and solvent
strongest for F-and
weakest for ™=

F— more solvated

more difficult for F— to
shed solvent molecules to
react with electrophile =

weaker nucleophile
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Self-Test Question

All of the molecules/anions below are strong bases.
However, each is non-nucleophilic; they do not participate
in SN2 reactions. Why?

arge van der Waals radius

>U< w/ Y %‘ B. unstable; decompose rapidly

C. each atom already satisfies
- octet rule; can't form more
NaieNae ” bonds
/SI' N SI'\

D. nucleophiles must be neutral

E. too highly solvated
sterically hindered = non-nucleophilic
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Self-Test Question

Which potential energy diagram best describes the
substitution reaction of 1-bromo-1-methylcyclohexane
with a cyanide nucleophile.

Hint: 3° alkyl halides do
CHs NC

not proceed through )
an Sn2 mechanism. ij ST ij
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Tertiary Alkyl Halides Do Not Proceed
Through an Sn2 Mechanism
Increasing rate of substitution by the Sy2 mechanism
R;CX < R,CHX < RCH,X <  CHsX

Tertiary Secondary Primary Methyl
Least reactive, Most reactive,
most crowded least crowded

Least crowded- Most crowded-
most reactive least reactive

¢
@ e
¢ © «.Q@ c?,

CH_;BI' CH_\CH:BI‘ (CHK)ZCHBF

(CH3);CBr

2B &
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Sn1 Mechanism

CHs NC. CHsg
sz, =N ij

N, &
\C\
CHsj

~
N
\I

University of lllinois
at Chicago

UIC

nucleophile adds rapidly to
carbocation

rate = k[alkyl halide]

ij unimolecular

CHEM 232, Spring 2010

Slide 10
Lecture 18: March 11




Sn1 Mechanism: Solvolysis

molecule of the solvent, the process is called solvolysis

Br. CHgs solvent_ CHg

ij solvent é

hydrolysis

methanolysis

ammonolysis
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Sn1 Mechanism: Solvolysis

CHs

Gj—a : OH,

carbocation oxonium ion

H

| s+
_0d
H \\ CH3

the end (fast)

any Bronsted base in solution
can perform the

deprotonation (here = H,O
or Br)
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Rate of Sn1 vs. Sn2

Increasing rate of substitution by the Sy2 mechanism

R:«CX <  R,CHX < RCH,X < CHsX

Tertiary Secondary Primary Methyl
Least reactive, Most reactive,
most crowded least crowded

Increasing rate of substitution by the Sy1 mechanism

CH:X < RCH,X <  R,CHX R;CX

Methyl Primary Secondary Tertiary
Forms least Forms most
stable carbocation stable carbocation
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Sn1 Mechanism

CHs NC. CHsg
sz, =N ij

will also stabilize the TS

lower energy TS = faster
reaction

What lowers the energy of
carbocations and thus the TS?
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Review: Carbocation Stability

" I. Inductive Effect
2. Hyperconjugation

_ 3. Resonance

* C-C 0-bonds are more
polarizable, therefore
donate more electron
density through 0-bonds

. . C-C o-bonds =
° carbocation more ones =
more stable carbocation
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Review: Carbocation Stability

-

\_

|. Inductive Effect

2. Hyperconjugation

3. Resonance

2° carbocation

University of lllinois
at Chicago

CHEM 232, Spring 2010

-C 0-bonds are more
polarizable, therefore
donate more electron
density through 0-bonds

* more C-C O-bonds =
more stable carbocation
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Review: Carbocation Stability

" |. Inductive Effect

2. Hyperconjugation
_ 3. Resonance

e C-C 0-bonds are more
polarizable, therefore
donate more electron
density through 0-bonds

. * more C-C 0-bonds =
3° carbocation © ones =
more stable carbocation
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Review: Carbocation Stability

1. Inductive Effect

2. Hyperconjugation
_ 3. Resonance

)

therefore donate more electron density
through s-bonds

* more C-C 0-bonds = more stable

T b " carbocation
caroocation
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Review: Carbocation Stability

1. Inductive Effect

2. Hyperconjugation
_ 3. Resonance

T

\N\ 4/ ...-GHo

26— B ,
o ~p

therefore donate more electron density

through s-bonds
H

* more C-C 0-bonds = more stable

2° carbocation carbocation
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Review: Carbocation Stability

3° carbocation

University of lllinois
at Chicago

-

|. Inductive Effect
2. Hyperconjugation
3. Resonance

)

therefore donate more electron density
through s-bonds

* more C-C 0-bonds = more stable
carbocation

Slide 20
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Review: Carbocation Stability

y
I

. Inductive Effect
2. Hyperconjugation
_ 3. Resonance

o

no resonance = less stable (higher energy) = slower

ot — o

resonance = more stable (lower energy) = faster
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Carbocation Stability: Solvent Effect

CHgj : solvent_ CHg
X +  solvent solvolysis X

.U Relative Rate of Syl Solvolysis of tert-Butyl Chloride as a
Function of Solvent Polarity*

Solvent Dielectric constant € Relative rate

Acetic acid 6
Methanol 33
Formic acid h8
Water 78

1

4

5,000
150,000

* more polar solvent = more stable carbocation = faster reaction (kre
* polar stabilizes polar
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Carbocation Stability: Solvent Effect

Cl C O

)QHS . )j\OH acetolysis Z/%m

krel =1

acetic acid

.U Relative Rate of Syl Solvolysis of tert-Butyl Chloride as a
Function of Solvent Polarity*

Solvent Dielectric constant € Relative rate

Acetic acid 6 1
Methanol sis 4
Formic acid h8

5,000
Water 78 150,000

® more polar solvent = more stable carbocation = raster reaction

re
e polar stabilizes polar
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Carbocation Stability: Solvent Effect

CH : -0, CHgs
){ 3 + HaC. methanolysis H3C )Q

OH Krel = 4
methanol

.U Relative Rate of Syl Solvolysis of tert-Butyl Chloride as a
Function of Solvent Polarity*

Solvent Dielectric constant € Relative rate

Acetic acid 6 1
Methanol sis 4
Formic acid h8

5,000
Water 78 150,000

® more polar solvent = more stable carbocation = raster reaction

re
e polar stabilizes polar
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Carbocation Stability: Solvent Effect

formolysis
Kol = 5,000

formic acid

.U Relative Rate of Syl Solvolysis of tert-Butyl Chloride as a
Function of Solvent Polarity*

Solvent Dielectric constant € Relative rate

Acetic acid 6 1
Methanol sis 4
Formic acid h8

5,000
Water 78 150,000

® more polar solvent = more stable carbocation = raster reaction

re
e polar stabilizes polar
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Carbocation Stability: Solvent Effect

CHj

X H,0 hydrolysis - X

k.o = 150,000

water
LAl Relative Rate of Sy1 Solvolysis of tert-Butyl Chloride as a
Function of Solvent Polarity*

Solvent Dielectric constant € Relative rate

Acetic acid 6 1
Methanol sis 4
Formic acid h8

5,000
Water 78 150,000

® more polar solvent = more stable carbocation = raster reaction

re
e polar stabilizes polar
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Solvent Effect on Carbocation Stability

N 4

e CI\\\ CH3

P
o8>

A\ + CI™

Cl. CHs

e

. |ess |! c!arge = |ower energy  more TS charge = higher energy

* |ower energy TS = faster Sn| * higher energy TS = faster Sn
o little effect on alkyl halide reactant ¢ little effect on alkyl halide reactant
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Solvent Effects on Sn2 Reactions?

[L.UIAR W Relative Rate of Sy2 Displacement of 1-Bromobutane by
Azide in Various Solvents*

Structural Dielectric Type of Relative
Solvent formula constant € solvent rate

Methanol CH5;0H 32.6 Polar protic
Water H,0 78.5 Polar protic
Dimethyl sulfoxide (CH3),S==0 48.9 Polar aprotic
N, N-Dimethylformamide (CH3),NCH==0 SO Polar aprotic
Acetonitrile CH;C=N ) Polar aprotic

® no tren! !etween !|e|ectr|c constant an! rate IOF !N! reactions

e fastest SN2 reactions in polar aprotic (no acidic hydrogen)
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Solvent Effects on Sn2 Reactions

nucleophile, especially through hydrogen bonding

4 R
* protic solvent = capable
of hydrogen bonding

more hydrogen bonding
= more solvation of
nucleophile

form a solvation shell
around nucleophile

more solvated =
decreased nucleophilicity

slower SN2 reaction
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Solvent Effects on Sn2 Reactions

= more nucleophilic = faster Sn2
4

* aprotic solvent = not
capable of hydrogen
bonding

less solvation than protic
nucleophile is “freer”

less solvated = increased
nucleophilicity

faster SN2 reaction
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Solvent Effects on Sn2 Reactions

CH5;0OH
(methanol)

>

20 hours

CH3CN
(acetonitrile)

>

20 minutes
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Self-Test Question

Determine the fastest reaction in each
pair and list them in order of a,b,c.

s | AL 1,1,

DMF
NaN3

N3
| 2,2,1
NaSH _ O/SH
DMSO
v T €122
DMSO |
o o] D.2,1,1
N T
NaCN CN
con~ T E.212
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Stereochemistry of Sn1 Reactions

H | | o ~ H
: CH H.C. "
:/ 3 3\5

-
-

H-,O z
—Br — 2= HO—C + C—OH
\ /

CH3(CH>)s (CH,)sCH3z  CH3(CH,)s
(R)-(—)-2-Bromooctane (S5)-(+)-2-Octanol (R)-(—)-2-Octanol

66% net inversion corresponds
to 83% S, 17% R

-

* racemization: conversion of optically active starting material to a racemic
mixture (I:| of enantiomers)
* Why is racemization not complete in above example?
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Stereochemistry of Sn1 Reactions

Carbocation/Leaving group ion pair Carbocation

O Separation of ‘
carbocation and
/\ Iomzatlon ‘ anion of Icavmg group

Leaving group shields front side of carbocation; Carbocation free of leaving group:
nucleophile ‘ attacks faster from back. nucleophile ‘ attacks either side of

More inversion of configuration than retention. carbocation at same rate. Product is racemic.

OQ‘, i 00 OQ" i e.

More than 50% Less than 50% 50%
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Elimination-Substitution Competition

elimination competes with substitution

B elimination)

/
C=C\ $ H—=Y X~

nucleophilic
substitution
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Elimination-Substitution Competition

elimination competes with substitution

\/

CHaCH,0 :

OCH,CHj

Anion must be more basic than hydroxide (pKa of conjugate
acid > |5.7) for El or E2 to be a competing mechanism
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Elimination-Substitution Competition

elimination competes with substitution

~2 OCH,CHs
\9\(\ L .
_|_

"2 OCH,CHs

h

OCH,CHg
Anion must be more basic than hydroxide (pKa of conjugate
acid > |5.7) for El or E2 to be a competing mechanism
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Conditions Favoring Substitution

>
|. Low steric hinderance:

a. small nucleophiles

b. least substituted alkyl halide possible
2.Neutral nucleophiles (like solvolysis)
P.Or anionic nucleophiles less basic than OH-

J

NaOCH,CH
CHo(HCH, SH.Gioi 55> CH;CH=CH, + CHy(CHCH,

Br OCHQCH3
[sopropyl bromide Propene (87%) Ethyl isopropyl ether (13%)

University of lllinois . Slide 38
el U I c CHEM 232, Spring 2010 i Vi




Conditions Favoring Substitution

>
|. Low steric hinderance:

a. small nucleophiles

b. least substituted alkyl halide possible
2.Neutral nucleophiles (like solvolysis)
P.Or anionic nucleophiles less basic than OH-

J

NdOCHgCH -
CH;CH,CH,Br giaron ssic> CHsCH=CH, + CH5;CH,CH,OCH,CHs

Propyl bromide Propene (9%) Ethyl propyl ether (91%)
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Conditions Favoring Substitution

>
|. Low steric hinderance:

a. small nucleophiles

b. least substituted alkyl halide possible
2.Neutral nucleophiles (like solvolysis)
P.Or anionic nucleophiles less basic than OH-

J

KOC(CHy): :
CH_‘;(CHz)lSCHQ_CHzBr (CH;'}COH.“‘OOC’ CH3(CH2)|§CH=CH2 + CH}(CHQ)ISCHQCH:!()C(CH‘;)3

1-Bromooctadecane 1-Octadecene (87%) rert-Butyl octadecyl ether (13%)

KOC(CH3)s3 is so large that it prefers Ez even
when the alkyl halide is primary
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Conditions Favoring Substitution

>
|. Low steric hinderance:

a. small nucleophiles

b. least substituted alkyl halide possible
2.Neutral nucleophiles (like solvolysis)
3.0r anionic nucleophiles less basic than OH-

J

Cl_ CHs; : -0, CHs
)Q + HsC. methanolysis H3C ){
OH k. =4
rel

methanol

Neutral nucleophiles are not basic enough to deprotonate a f3-
hydrogen in an E2 mechanism; they also undergo addition to
carbocations faster than deprotonation in an El mechanism
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University of lllinois

Conditions Favoring Substitution

>
|. Low steric hinderance:

a. small nucleophiles

b. least substituted alkyl halide possible
2.Neutral nucleophiles (like solvolysis)
g.Or anionic nucleophiles less basic than OH-

J

KCN

CH3CH(CH2)5CH3 v CHgCH(CHz)SCHg

| |
Cl CN

2-Chlorooctane 2-Cyanooctane (70%)

pKa (H20) = 15.7 pKa (HCN) = 9.1
stonger acid = weaker conjugate base
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Conditions Favoring Elimination

-

|. Large steric interactions:
a. large nucleophiles
b. most substituted alkyl halide possible
2. Anionic nucleophiles more basic than OH-
G J

CHs

Br CH3
T e e /CH3
CHs

pKa (H20) = 15.7 pKa (tert-butanol) = |8
stonger acid = weaker conjugate base
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Self-Test Question

What is the major product of the reaction below?

HgCO

A HsCO

HsCO

B o

CHg ..
+ | :S-C=N: : N
m o o HsCO

C

HzCO

DMF = N,N-dimethylformamide
(common polar aprotic solvent) H3CO

HsCO

University of U I c CHEM 232, Spring 2010 Slide 44
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Sulfonic Acids & Sulfonyl Chlorides

p-toluenesulfonic acid
TsOH

p-toluenesulfonyl chloride
TsCl

toluene

University of lllinois
at Chicago

0
HaC~S-OH
O

methanesulfonic acid
MsOH

7
HSC_§_C|
@)

methanesulfonyl chloride
MsCI

O

N

R~ OH
carboxylic acid

CHEM 232, Spring 2010

trifluoromethanesulfonic acid
TfOH

trifluoromethanesulfonyl chloride
TfCl

O

N

R Cl
acid chloride
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Alkyl Sulfonates

p-toluenesulfonyl chloride
TsCl

methanesulfonyl chloride
MsCl

trifluoromethanesulfonyl chloride
TfClI

You will learn the mechanism for this process in Chapter 20;
Don’t worry about it for now.
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Alkyl Sulfonates

HO TsO

Ts—Cl + \O \O + HCI
HO MsO

wo ) + w

HO TfO
T=Cl  + \O \O + HCI

[Pyridine (Py) is also usually added in this reaction to nethraIize the HCI produced\

NT CI

()

pyridine pyridinium chloride

You should memorize the abbreviations for these three groups.
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Alkyl Sulfonates Are Electrophiles

* very good leaving group
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Alkyl Sulfonates Are Electrophiles

H KCN  _ H
CHz()TS ethanol-water CHZCN

(3-Cyclopentenyl)methyl 4-(Cyanomethyl)cyclo-
p-toluenesulfonate pentene (86%)

CH3(|JHCH2CH3 + NaBr =29 CH,CHCH,CH; +  NaOTs

|
OTs Br

sec-Butyl Sodium sec-Butyl Sodium
p-toluenesulfonate bromide bromide (82%) p-toluenesulfonate
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TsO, MsO & TfO are Excellent Leaving
Groups

TABLE K Approximate Relative Leaving-Group Abilities*

Conjugate acid of pK, of
Leaving group Relative rate leaving group conjugate acid

F- (o HF 3.1
Cl™ 10° HCI -3.9
Br 10; HBr -5.8
o Jo! 0" =
CH5S0,0~ 108 CH5S0,0H —2.6
TsO™ 10° TsOH -2.8
CF3S0,0~ 108 CF3S0,0H -6.0

conjugate bases stabilized by
resonance and inductive effects =

that makes sulfonates (conjugate
bases) very good leaving groups
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Self-Test Question

Predict the major organic product of the

reaction below. o
® LK

B MSO\):(())><
C o LX<

O>< 1. MsCl, Pyridine
HO\):O 2. Nal, acetone
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Next Lecture. . .

Chapter 9: Sections 9.1-9.6

Quiz Next Week. . .

Chapter 8
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