CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Lecture 18 Organic Chemistry 1

Professor Duncan Wardrop

March 9, 2010

1

Nucleophilicity

nucleophilicity: measures the strength of the nucleophile ; more nucleophilic = faster SN2 reaction

TABLE 8.4	Nucleophilicity of Some Common Nucleophiles			
Reactivity cl	ass	Nucleophile	Relative reactivity*	
Very good nu Good nucleo Fair nucleop Weak nucleo Very weak nu	ucleophiles ophiles ohiles ophiles ucleophiles	I ⁻ , HS ⁻ , RS ⁻ Br ⁻ , HO ⁻ , RO ⁻ , CN ⁻ , N ₃ ⁻ NH ₃ , CI ⁻ , F ⁻ , RCO ₂ ⁻ H ₂ O, ROH RCO ₂ H	$>10^{5}$ 10^{4} 10^{3} 1 10^{-2}	

I. for identical atoms, more basic = more nucleophilic

Nucleophilicity

nucleophilicity: measures the strength of the nucleophile ; more nucleophilic = faster SN2 reaction

Very good nucleophiles Good nucleophiles Fair nucleophiles Weak nucleophiles Very weak nucleophiles	I ⁻ , HS ⁻ , RS ⁻ Br ⁻ , HO ⁻ , RO ⁻ , CN ⁻ , N ₃ ⁻ NH ₃ , CI ⁻ , F ⁻ , RCO ₂ ⁻ H ₂ O, ROH RCO ₂ H	$>10^{5}$ 10^{4} 10^{3} 1 10^{-2}
2. For atoms in the decreases left to	same row and with same right	e charge, nucleophilicity
H ₃ C-N	H ₂ is more nucleophilic than (stronger base = stronger nuc	H₃C−OH
CH ₃ NI (conjugate pKa = 1	H ₃ ⁺ e acid) 10.7	CH ₃ OH ₂ + (conjugate acid) pKa = -2

Uni

Nucleophilicity

nucleophilicity: measures the strength of the nucleophile ; more nucleophilic = faster SN2 reaction

Nucleophile	Relative reactivity*
I ⁻ , HS ⁻ , RS ⁻ Br ⁻ , HO ⁻ , RO ⁻ , CN ⁻ , N ₃ ⁻ NH ₃ , CI ⁻ , F ⁻ , RCO ₂ ⁻ H ₂ O, ROH RCO ₂ H	$>10^{5}$ 10^{4} 10^{3} 1 10^{-2}
es not follow basicity down a rease down a column	a column;
is more nucleophilic than	H ₃ C-OH
	•• -
	Nucleophile I ⁻ , HS ⁻ , RS ⁻ Br ⁻ , HO ⁻ , RO ⁻ , CN ⁻ , N ₃ ⁻ NH ₃ , CI ⁻ , F ⁻ , RCO ₂ ⁻ H ₂ O, ROH RCO ₂ H es not follow basicity down a rease down a column is more nucleophilic than

Univ

Explanation for Halide Nucleophilicity

- small anions =
- high charge to size ratio =
- ion-dipole forces between halide and solvent strongest for F⁻ and weakest for I⁻=
- F- more solvated
- more difficult for F– to shed solvent molecules to react with electrophile =
- weaker nucleophile

ty of Illinois at Chicago

CHEM 232, Spring 2010

Slide 5 Lecture 18: March 11

Self-Test Question

All of the molecules/anions below are strong bases. However, each is non-nucleophilic; they do not participate in $S_N 2$ reactions. Why?

sterically hindered = non-nucleophilic

A. large van der Waals radius

- B. unstable; decompose rapidly
- C. each atom already satisfies octet rule; can't form more bonds
- D. nucleophiles must be neutral
- E. too highly solvated

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Chapter 8 S_N1 Mechanism of Nucleophilic Substitution

Sections 8.8 - 8.13

Self-Test Question

Which potential energy diagram best describes the substitution reaction of 1-bromo-1-methylcyclohexane with a cyanide nucleophile.

Tertiary Alkyl Halides Do Not Proceed Through an S_N2 Mechanism

Increasing rate of substitution by the S_N2 mechanism R_2CHX R_3CX RCH_2X CH_3X <<<Tertiary Secondary Primary Methyl Least reactive. Most reactive. most crowded least crowded Least crowded-Most crowdedmost reactive least reactive CH₃Br CH₃CH₂Br (CH₃)₂CHBr (CH₃)₃CBr Slide 9 University of Illinois CHEM 232, Spring 2010 at Chicago Lecture 18: March 11

$S_N 1$ Mechanism

University of Illinois

at Chicago

CHEM 232, Spring 2010 Slide 10 Lecture 18: March 11

S_N1 Mechanism: Solvolysis

When the nucleophile undergoing either $S_N I$ or $S_N 2$ is a molecule of the solvent, the process is called solvolysis

S_N1 Mechanism: Solvolysis

Rate of $S_N 1 vs. S_N 2$

$S_N 1$ Mechanism

What lowers the energy of carbocations and thus the TS?

CHEM 232, Spring 2010

Slide 14 Lecture 18: March 11

- 2. Hyperconjugation
- 3. Resonance

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- C-C σ-bonds are more polarizable, therefore donate more electron density through σ-bonds
- more C-C σ-bonds = more stable carbocation

Slide 15 Lecture 18: March 11

- I. Inductive Effect
- 2. Hyperconjugation
- 3. Resonance

I° carbocation

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- C-C σ-bonds are more polarizable, therefore donate more electron density through s-bonds
- more C-C σ-bonds = more stable carbocation

CHEM 232, Spring 2010

Slide 18 Lecture 18: March 11

- I. Inductive Effect
- 2. Hyperconjugation
- 3. Resonance

2° carbocation

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- C-C σ-bonds are more polarizable, therefore donate more electron density through s-bonds
- more C-C σ-bonds = more stable carbocation

CHEM 232, Spring 2010

Slide 19 Lecture 18: March 11

- I. Inductive Effect
- 2. Hyperconjugation
- 3. Resonance

3° carbocation

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- C-C σ-bonds are more polarizable, therefore donate more electron density through s-bonds
- more C-C σ-bonds = more stable carbocation

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 20 Lecture 18: March 11

- dielectric constant (ϵ) = a crude measure of a solvent's polarity
- more polar solvent = more stable carbocation = faster reaction (krel)
- polar stabilizes polar

CICI	$H_{3} + \underbrace{\downarrow}_{OH} OH_{acetolysis} + \underbrace{\downarrow}_{Rrel} OH_{rel} = 1$	-O_CH ₃
TABLE 8.6	Relative Rate of S _N 1 Solvolysis of <i>tert</i> -Butyl Chloride as a Function of Solvent Polarity*	
Solvent	Dielectric constant €	Relative rate
Acetic acid Methanol Formic acid	6 33 59	1 4

- dielectric constant (e) = a crude measure of a solvent's polarity
- more polar solvent = more stable carbocation = faster reaction (krel)
- polar stabilizes polar

	H_3 + H_3C_OH methanol $k_{rel} = 4$ H_3C^-	O_CH ₃
TABLE 8.6	Relative Rate of $S_N 1$ Solvolysis of <i>tert</i> -Butyl Chloride as a Function of Solvent Polarity*	
Solvent	Dielectric constant ϵ	Relative rate
Acetic acid Methanol Formic acid Water	6 33 58 78	1 4 5,000 150,000

- dielectric constant (e) = a crude measure of a solvent's polarity
- more polar solvent = more stable carbocation = faster reaction (krel)
- polar stabilizes polar

CICI	$H_{3} + H OH + H OH formic acid $	-O_CH ₃
TABLE 8.6	Relative Rate of S _N 1 Solvolysis of <i>tert</i> -Butyl Chloride as a Function of Solvent Polarity*	a
Solvent	Dielectric constant ∈	Relative rate

- dielectric constant (e) = a crude measure of a solvent's polarity
- more polar solvent = more stable carbocation = faster reaction (krel)
- polar stabilizes polar

CI	$\begin{array}{c} CH_{3} \\ + \\ H_{2}O \\ \\ water \end{array} \xrightarrow{hydrolysis} \\ k_{rel} = 150,000 \\ \end{array} $	CH ₃
TABLE 8.6	Relative Rate of S _N 1 Solvolysis of <i>tert</i> -Butyl Chloride as a Function of Solvent Polarity*	
Solvent	Dielectric constant ϵ	Relative rate
Acetic acid Methanol Formic acid Water	6 33 58 78	1 4 5,000 150,000

- dielectric constant (e) = a crude measure of a solvent's polarity
- more polar solvent = more stable carbocation = faster reaction (krel)
- polar stabilizes polar

Solvent Effect on Carbocation Stability

CHEM 232, Spring 2010

- polar solvent reduce charge in TS through dipole-dipole interactions
- less TS charge = lower energy
- lower energy TS = faster S_N I

University of Illinois

at Chicago

little effect on alkyl halide reactant

- non-polar solvent does not have strong VW interactions
- more TS charge = higher energy
- higher energy TS = faster S_NI
- little effect on alkyl halide reactant

Slide 27 Lecture 18: March 11

Solvent Effects on S_N2 Reactions?

TABLE 8.7	Relative Rate of S _N 2 Displacement of 1-Bromobutane by Azide in Various Solvents*
-----------	---

Na_{N3}

`Br

+

Solvent	Structural	Dielectric	Type of	Relative
	formula	constant ϵ	solvent	rate
Methanol	CH ₃ OH	32.6	Polar protic	1
Water	H ₂ O	78.5	Polar protic	7
Dimethyl sulfoxide	(CH ₃) ₂ S==0	48.9	Polar aprotic	1300
<i>N,N</i> -Dimethylformamide	(CH ₃) ₂ NCH==0	36.7	Polar aprotic	2800
Acetonitrile	CH ₃ C==N	37.5	Polar aprotic	5000

protic: contains an acidic hydrogen capable of H-bonding (OH, NH, SH)

- no trend between dielectric constant and rate for S_N2 reactions
- fastest S_N2 reactions in polar aprotic (no acidic hydrogen)

 N_3

Solvent Effects on S_N2 Reactions

polar protic solvents = more solvation of nucleophile, especially through hydrogen bonding

- protic solvent = capable of hydrogen bonding
- more hydrogen bonding
 more solvation of nucleophile
- form a solvation <u>shell</u> around nucleophile
- more solvated = decreased nucleophilicity
- slower S_N2 reaction

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 29 Lecture 18: March 11

Solvent Effects on S_N2 Reactions

polar aprotic solvents = less solvation of nucleophile = more nucleophilic = faster S_N2

Solvent Effects on S_N2 Reactions

Self-Test Question

Determine the fastest reaction in each pair and list them in order of a,b,c.

Stereochemistry of S_N1 Reactions

- generally, S_NI reactions are <u>not</u> stereospecific
- nucleophiles can add to both sides of a carbocation intermediate
- results in inversion of configuration and retention of configuration
- racemization: conversion of optically active starting material to a racemic mixture (1:1 of enantiomers)
- Why is racemization not <u>complete</u> in above example?

Stereochemistry of S_N1 Reactions

Elimination-Substitution Competition

When the nucleophile is anionic, elimination competes with substitution

Elimination-Substitution Competition

Anion must be more basic than hydroxide (pKa of conjugate acid > 15.7) for E1 or E2 to be a competing mechanism

Elimination-Substitution Competition

acid > 15.7) for E1 or E2 to be a competing mechanism

$$\begin{array}{cccc} CH_{3}CHCH_{3} & \xrightarrow{NaOCH_{2}CH_{3}} \\ Br & & OCH_{2}OH, 55^{\circ}C \end{array} \\ Isopropyl bromide & Propene (87\%) & Ethyl isopropyl ether (13\%) \end{array}$$

I. Low steric hinderance:

- a. small nucleophiles
- b. least substituted alkyl halide possible
- 2. Neutral nucleophiles (like solvolysis)
- 3.Or anionic nucleophiles less basic than OH⁻

CHEM 232, Spring 2010

Slide 39 Lecture 18: March 11

 $CH_{3}(CH_{2})_{15}CH_{2}CH_{2}Br \xrightarrow{KOC(CH_{3})_{3}} CH_{3}(CH_{2})_{15}CH = CH_{2} + CH_{3}(CH_{2})_{15}CH_{2}CH_{2}OC(CH_{3})_{3}$ $1-Bromooctadecane \qquad 1-Octadecene (87\%) \qquad tert-Butyl octadecyl ether (13\%)$

KOC(CH₃)₃ is so large that it prefers E₂ even when the alkyl halide is primary

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 40 Lecture 18: March 11

- I. Low steric hinderance:
 - a. small nucleophiles

University of Illinois

at Chicago

- b. least substituted alkyl halide possible
- 2. Neutral nucleophiles (like solvolysis)
- 3.Or anionic nucleophiles less basic than OH⁻

Neutral nucleophiles are not basic enough to deprotonate a β -hydrogen in an E2 mechanism; they also undergo addition to carbocations faster than deprotonation in an E1 mechanism

CHEM 232, Spring 2010

Slide 41 Lecture 18: March 11

- a. small nucleophiles
- b. least substituted alkyl halide possible

2. Neutral nucleophiles (like solvolysis)

3.Or anionic nucleophiles less basic than OH⁻

Conditions Favoring Elimination

University of Illinois

at Chicago

b. most substituted alkyl halide possible

2. Anionic nucleophiles more basic than OH⁻

 $pK_a (H_2O) = 15.7$ $pK_a (tert-butanol) = 18$ stonger acid = weaker conjugate base

CHEM 232, Spring 2010

Slide 43 Lecture 18: March 11

Self-Test Question

What is the *major* product of the reaction below?

Sulfonic Acids & Sulfonyl Chlorides

Alkyl Sulfonates

You will learn the mechanism for this process in Chapter 20; Don't worry about it for now.

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 46 Lecture 18: March 11

Alkyl Sulfonates

Alkyl Sulfonates Are Electrophiles

- sulfonates (TsO⁻, MsO⁻, TfO⁻) are highly stabilized by resonance =
- very weak conjugate bases =
- very good leaving group

University of Illinois at Chicago UIC CHEM 232, Spring 2010 Slide 48 Lecture 18: March 11

Alkyl Sulfonates Are Electrophiles

TsO, MsO & TfO are Excellent Leaving Groups

	TABLE 8.8 Ap	oproximate Relative Leaving-G	Group Abilities	k	
	Leaving group	Relative rate	Conjugate acid leaving group	of p <i>K</i> _a of conjugate acid	
	F^{-} CI^{-} Br^{-} I^{-} $H_{2}O$ $CH_{3}SO_{2}O^{-}$ TsO^{-} $CF_{3}SO_{2}O^{-}$	$10^{-5} \\ 10^{0} \\ 10^{1} \\ 10^{2} \\ 10^{1} \\ 10^{4} \\ 10^{5} \\ 10^{8} \\ 10^{8} \\ 10^{1} \\ $	$\begin{array}{l} HF \\ HCI \\ HBr \\ HI \\ H_3O^+ \\ CH_3SO_2OH \\ TsOH \\ CF_3SO_2OH \end{array}$	$\begin{array}{r} 3.1 \\ -3.9 \\ -5.8 \\ -10.4 \\ -1.7 \\ -2.6 \\ -2.8 \\ -6.0 \end{array}$	
H ₃ C) S-OH ——	\rightarrow H ₃ C $ \stackrel{O}{=}$ $ \stackrel{O}{=}$ $ \stackrel{O}{=}$ $\stackrel{O}{=}$	+ H ⁺	sulfonic acids are very s	strong acids =
Ç	- -	С О	•	conjugate bases very st	able (weak):
H ₃ C-S	5-0н 	➡ H ₃ C-S O	+ H ⁺ •	conjugate bases stabiliz resonance and inductiv	ed by e effects =
F ₃ C-S) 6-он 	$=$ $F_3C-S=0$	+ H ⁺ •	that makes sulfonates (bases) very good leavin	conjugate g groups
niversity of Illinois at Chicago	UIC	CHEM 232, S	pring 2010	SI Lecture	ide 50 18: March 11

Self-Test Question

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Next Lecture. . .

Chapter 9: Sections 9.1-9.6

Quiz Next Week. . .

Chapter 8