Lecture 22 Organic Chemistry 1

Professor Duncan Wardrop

April 1, 2010

Self Test Question

Which starting material could *not* be used to prepare the tribromide below?

Classification of Dienes

isolated diene

- two p-systems are not adjacent
- no overlap between 2 psystems

conjugated diene

- two p-systems are adjacent
- overlap exists between 2 psystems

cummulated diene (allene)

- central carbon atom is part of two p-systems
- central carbon = sp
- p orbitals for each p-system are perpendicular

Nomenclature

isolated diene

(2E, 5E)-2,5-heptadiene

conjugated diene

(2E, 4E)-2,4-heptadiene

3,4-heptadiene

Relative Stabilities of Dienes

(E)-1,3-Pentadiene is 26 kJ/mol more stable than 1,4-pentadiene. Two reasons: more subst. & conjugation.

University of Illinois at Chicago

Slide 5 Lecture 22: April 1

"Substitution" Energy

(E)-2-Pentene is disubstituted and is 11 kJ/mol more stable than 1-pentene, which is monosubstituted.

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 6

Lecture 22: April 1

Delocalization Energy

Upon hydrogenation of the terminal alkene, the conjugated double bond releases 15 kJ/mol **less** than non-conjugated

University of Illinois at Chicago

Slide 7
Lecture 22: April 1

Delocalization Energy

Extra stability due to conjugation = conjugation energy or resonance energy or **delocalization energy**

University of Illinois at Chicago

Slide 8 Lecture 22: April 1

Self Test Question

List the molecules below in order of *increasing* heat of hydrogenation. *Hint: some* are trienes.

A. a,b,c,d,e

B. d,e,c,b,a

C.)a,c,b,e,d

D. a,b,c,e,d

E. e,d,b,c,a

Bonding in Conjugated Dienes

- single bonds between p-systems are stronger & shorter:
- increased s-character =
- increased attraction of electrons toward carbon nucleus =
- stronger C-C bonds =
- shorter bond lengths

Conformational Analysis of Dienes

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 11 Lecture 22: April 1

Conformations of Conjugated Dienes

Prefered conformations are s-Cis and s-Trans

s = single bond conformation between two alkenes

Conformations of Conjugated Dienes

Prefered conformations are s-Cis and s-Trans

When two p-systems are co-planar they overlap and stabilize that conformation (delocalization energy)

Conformations of Conjugated Dienes

Prefered conformations are s-Cis and s-Trans

(a) Isolated double bonds

(b) Conjugated double bonds

When two p-systems are co-planar they overlap and stabilize that conformation (delocalization energy)

University of Illinois at Chicago

Slide 14 Lecture 22: April 1

s-Trans More Stable than s-Cis

increased steric interactions in s-Cis

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 15 Lecture 22: April 1

Bonding in Allenes

- central carbon atom is sp hybridized
- most s-character = stronger C-C bonds than even conjugated alkenes

Bonding in Allenes

planes defined by H(C-I) and H(C-3) are perpendicular

p-orbital of C-I and p-orbital of C-2 overlap to form Π -bond

p-orbital of C-2 and p-orbital of C-3 overlap to form 2nd Π -bond

allene is nonplanar; two Π -bonds are perpendicular to each other

Slide 17 Lecture 22: April 1

Bonding in Allenes

Q: Are allenes stabilized by delocalization energy?

A: No. $\mathcal{\Pi}$ -systems are orthogonal/perpendicular. No overlap, and thus delocalization, is possible.

Allenes Can Be Chiral

These two allenes are enantiomers: non superimposible mirror images

Self Test Question

A. 2-methyl-2,3-butadiene

$$H_3C$$

 $C=C=C$
 H

B. 2-methyl-1,4-pentadiene

C. 2,3-heptadiene

Which of the following dienes is chiral?

D. 2,4-dimethyl-2,4-hexadiene

E. 1,4-dichloro-1,3-pentadiene

Chapter 10 Preparation & Reactions of Dienes

Sections: 10.12-10.15

Preparation of Dienes

Dehydrogenation

$$H_3C$$
 CH_3
 $COOC CH_3$
 $COOC CH_2$
 CO

This is an industrial process that works only when one possible diene can be obtained. Generally, it should not be used in the laboratory (synthesis questions).

Preparation of Dienes

Dehydration

Dehydration is <u>regioselective</u>. The transition state leading to conjugated alkenes is lowest = fastest process.

Preparation of Dienes

Dehydrohalogenation

Dehydrohalogenation is also <u>regioselective</u>. The transition state leading to conjugated alkenes is lowest = fastest process.

Addition of Hydrogen Halides to Conjugated Dienes

Br H

I,2-Addition
Product
(direct addition)

I,4-Addition
Product
(conjugate addition)

Kinetic product:

major product at low temperature

Thermodynamic product: major product at high temp.

University of Illinois at Chicago

Slide 25 Lecture 22: April 1

Control of HX Addition to Conjugated Dienes

Kinetic Control:

- low temperatures = irreversible reaction (requirement)
- fastest forward process predominates
- lowest TS NRG = fastest reaction = major product
- here, lowest NRG TS = ∂ + on most substituted carbon

Slide 26 Lecture 22: April 1

Control of HX Addition to Conjugated Dienes

Thermodynamic Control:

- "high" temperatures = reversible reaction (requirement)
- most stable product predominates
- reverse process for most stable product = largest Ea
- here, most stable product = most substituted <u>alkene</u>

University of Illinois at Chicago

Slide 27 Lecture 22: April 1

Conditions of Kinetic and Thermodynamic Control

1,4-addition (thermodynamic product)

1,2-addition (kinetic product)

Addition of HX to Conjugated Dienes

Addition of HX to conjugated dienes is only useful in synthesis when there is only one carbocation intermediate; each resonance form does not count separately

Self Test Question

What is the *kinetic product* for HBr addition to the conjugated diene below?

$$\begin{bmatrix} + CH_3 \\ - CH_3 \end{bmatrix}$$

$$CH_3$$

CH₃ CH_3 Br CH_3 B CH_3 Br Br CH₃ CH_3 CH_3 CH_3 CH_3

University of

Illinois at Chicago

Slide 30

Lecture 22: April 1

Terminology

- cycloaddition: forming a six-membered ring
- dienophile: typically an isolated alkene; "lover of" dienes (conjugated)
- pericyclic reaction: concerted rxn where transition state is cyclic (ring)
- Diels-Alder adduct: potentially any molecule with a cyclohexene ring

Diels-Alder reaction is **stereospecific** (the stereoisomeric product formed depends on the stereoisomer of the reactant).

diene

dienophile

Diels-Alder adduct

Substituents that are *trans* on the dienophile are also *trans* in the Diels-Alder adduct.

Diels-Alder reaction is **stereospecific** (the stereoisomeric product formed depends on the stereoisomer of the reactant).

diene (

dienophile

Diels-Alder adduct

Substituents that are cis on the dienophile are also cis in the Diels-Alder adduct.

- to form new bonds, p-orbitals of diene overlap with porbitals of dienophile
- both bonds are being formed at the same time
- cannot rotate around dienophile bond =
- relationships of groups don't change

Self Test Question

Predict the product.

Reactivity of Diels Alder

Ethylene and 1,3-butadiene are unreactive. In other words, they react very slowly.

Fastest reaction have both an EWG on the dienophile and an EDG on the diene.

We'll discover why next week.

Self Test Question

Which of the following dienes or dienophiles would be the *least reactive* in a Diels-Alder reaction?

$$C_{O_2N}$$

$$\begin{array}{c|c}
CH_3 \\
CH_3
\end{array}$$

Slide 46 Lecture 22: April 1

Diels Alder Reaction

More complex examples...

$$\begin{array}{c|c}
CH_3 \\
H_3C \\
H_3C
\end{array}$$

$$CH_3$$

Alkynes can also participate as a dienophile as long as the y are activated with EWGs

Diels Alder Reaction

More complex examples...

Cyclic dienes gives bridged bicylco Diels Alder adducts

Diels Alder in Synthesis

Molecules with cyclohexene rings can often be made through Diels-Alder reaction

Synthesis Example

University of Illinois at Chicago

Slide 50 Lecture 22: April 1

Self Test Question

Predict the product.

Next Lecture...

Chapter 10: Sections 10.16 & 10.17

Chapter 11: Sections 11.1-11.9

Quiz Next Week...

Chapter 10 & Synthesis Problems

Exam Two

- Monday, April 5
- 6:00-7:15 p.m.
- 250 SES
- Chapters 6-10 (everything!)
- Makeup Exam: Monday, April 12th, time t.b.a.

Makeup policy: There are no makeup exams without **prior** approval. Only students showing proof of a class conflict will have the option to take a makeup exam. To be added to the makeup list, you must email me no later than Friday, Feb. 12.

Exam One Grade Distribution

- Q1. Ranking (50 points)
- Q2. Predict the Products (50 points)
- Q3. Arrow-Pushing Mechanism (50 points)
- Q4. Nomenclature (20 points)
- Q5. Drawing & Conformational Analysis (50 points)
- Q6. Functional Groups (30 points)

Exam One Policies

- Non-scientific calculators allowed only
- No cell phones, ipods or others electronic devices
- No molecular models
- Periodic table will be provided
- Seating will be assigned
- Bring Your I.D.