Organic Chemistry I

CHEM 232 University of Illinois

Organic Chemistry I at Chicago

Lecture 23 Organic Chemistry 1

Professor Duncan Wardrop

April 6, 2010

1

Predict the product for the Diels-Alder reaction below.

Diels-Alder reactions are accelerated by EWGs on the dienophile and EDG on the diene. Which reaction below does not meet these electronic demands?

Reactivity of Diels-Alder

Pericyclic Reactions Raise Tough Questions

How do we rationalize these observations. . . .?

A complex molecule (many atoms) will have many molecular orbitals. However, only those orbitals highest in energy are involved in reactions (bond making/breaking).

A complex molecule (many atoms) will have many molecular orbitals. However, only those orbitals highest in energy are involved in reactions (bond making/breaking).

When MO energies for two molecules are different, the biggest energy drop (perturbation) occurs when the HOMO/LUMO energies are closest in energy

A complex molecule (many atoms) will have many molecular orbitals. However, only those orbitals highest in energy are involved in reactions (bond making/breaking).

When MO energies for two molecules are different, the biggest energy drop *(perturbation) occurs when the HOMO/LUMO energies are closest in energy*

- electrons in p-orbitals are higher in energy than electrons in σ-orbitals =
- FMOs (HOMO/LUMO) of π-systems are formed by combining only the p-orbitals in the π-system
- We can ignore all other lower energy AOs.

HOMO = highest occupied molecular orbital LUMO = lowest unoccupied molecular orbital

2 p AO in = 2 MOs out The dienophile contains 1 *∏*-bonds = 2 *∏*-electrons

Node = area of zero electron density More nodes = higher in energy

2 p AO in = 2 MOs out The dienophile contains 1 *∏*-bonds = 2 *∏*-electrons

True boundary surfaces for molecular orbitals of ethylene

As LUMO and HOMO become closer in energy, the overlap between orbitals becomes stronger =

- better/stronger bonding =
- Lower energy transition state $=$
- **Faster Reaction**

University of Illinois
at Chicago **CHEM 232, Spring 2010** Lecture 23: April 6 **20**

- As LUMO and HOMO become closer in energy, the overlap between orbitals becomes stronger =
- better/stronger bonding =
- Lower energy transition state $=$
- **Faster Reaction**

University of Illinois
at Chicago **CHEM 232, Spring 2010** Lecture 23: April 6 **21**

- As LUMO and HOMO become closer in energy, the overlap between orbitals becomes stronger =
- better/stronger bonding =
- Lower energy transition state =
- **Faster Reaction**

University of Illinois
at Chicago **CHEM 232, Spring 2010** Lecture 23: April 6 **22**

Substituent Effects on HOMO & LUMO

FMO Overlap in a Diels-Alder Reaction

symmetry allowed reaction

) orbitals must have identical symmetry for constructive interference (bonding overlap)

CHEM 232, Spring 2010

FMO Overlap in a Diels-Alder Reaction

Not All Cycloadditions are Symmetry- Allowed

Which figure best represents the LUMO of an allylic carbocation?

- Step one: determine the number of p AOs in the *∏* system.
- 2. Step two: draw the same number of unshaded molecular orbitals as p AOs.
- 3. Assign nodes to MOs. Lowest = 0. Each higher MO has one more node.
- 4. Shade MOs to reflect node assignment in step 3.
- 5. Determine # of electrons in *∏* system. Place those electrons into MO according to Hund, Pauli & Aufbau principles.

 $H_2C^{\geq C}CH_2$ π_1 π ₂ π_3 $A.888$ $B.$ $C.\cancel{}$ D. E.

CHEM 232, Spring 2010

Which figure best represents the LUMO of an allylic carbocation?

- Step one: determine the number of p AOs in the *∏* system.
- 2. Step two: draw the same number of unshaded molecular orbitals as p AOs.
- 3. Assign nodes to MOs. Lowest = 0. Each higher MO has one more node.
- 4. Shade MOs to reflect node assignment in step 3.
- 5. Determine # of electrons in *∏* system. Place those electrons into MO according to Hund, Pauli & Aufbau principles.

 π_1 π_2 π_3 H_2C^2 $A.888$ $B. \n{ }$ $C.\cancel{}$ D. E.

CHEM 232, Spring 2010

Which figure best represents the HOMO of 1,3-butadiene? A.

- Step one: determine the number of p AOs in the *∏* system.
- 2. Step two: draw the same number of unshaded molecular orbitals as p AOs.
- 3. Assign nodes to MOs. Lowest = 0. Each higher MO has one more node.
- 4. Shade MOs to reflect node assignment in step 3.
- 5. Determine # of electrons in *∏* system. Place those electrons into MO according to Hund, Pauli & Aufbau principles.

University of
Illinois at Chicago

CHEM 232, Spring 2010

Which figure best represents the HOMO of 1,3-butadiene?
A. R

- Step one: determine the number of p AOs in the *∏* system.
- 2. Step two: draw the same number of unshaded molecular orbitals as p AOs.
- 3. Assign nodes to MOs. Lowest = 0. Each higher MO has one more node.
- 4. Shade MOs to reflect node assignment in step 3.
- 5. Determine # of electrons in *∏* system. Place those electrons into MO according to Hund, Pauli & Aufbau principles.

University of
Illinois at Chicago

 H_2C CH_2 π_3 π_3

 π_1

CHEM 232, Spring 2010

Using FMO theory, determine whether the cycloaddition drawn is symmetry-allowed or symmetry-forbidden? *Hint: draw the LUMO of the allylic carbocation and the HOMO of ethylene.*

Using FMO theory, determine whether the cycloaddition drawn is symmetrically-allowed or symmetry-forbidden. *Hint: draw the LUMO of the allylic carbocation and the HOMO of 1,3-butadiene.*

Thermally Allowed Cycloadditions

Cycloadditions are allowed under thermal conditions (no light) if the total number of T -electrons = $4n+2$ (n = integer)

Which of the following cycloadditions is *not* symmetry-allowed?

Diels-Alder Reaction is Regioselective

For 1-substituted dienes and monosubstituted dienophiles, the major products are *ortho*

Ortho, Meta **&** *Para* **?**

ortho: 1,2-substituted groups on a six-membered ring (adjacent) *meta*: 1,3-substituted groups on a six-membered ring *para*: 1,4-substituted groups on a six-membered ring (opposite)

Diels-Alder Reaction is Regioselective

For 1-substituted dienes and monosubstituted dienophiles, the major products are *ortho*

A different pattern is evident with 2-substituted dienes. Predict the product.

Lecture 23: April 6

A

 $CH₃C$

O

OCH₃

Diels-Alder reaction is **stereospecific** (the stereoisomeric product formed depends on the stereoisomer of the reactant).

Substituents that are *trans* on the dienophile are also *trans* in the Diels-Alder adduct.

Diels-Alder reaction is **stereospecific** (the stereoisomeric product formed depends on the stereoisomer of the reactant).

- to form new bonds, p-orbitals of diene overlap with porbitals of dienophile
- both bonds are being formed at the same time
- cannot rotate around dienophile bond =
- relationships of groups don't change

University of Illinois
at Chicago

CHEM 232, Spring 2010

A similar stereospecificity is observed for the diene. *Out* groups are *cis* to each other in the product; likewise *In* groups are *cis* to each other in the prodcut. *Out* & *In* = *trans.*

A similar stereospecificity is observed for the diene. *Out* groups are *cis* to each other in the product; likewise *In* groups are *cis* to each other in the prodcut. *Out* & *In* = *trans.*

How do we explain the preference for relative stereochemistry between groups on the diene and groups on the dienophile?

- There is a preference (lower energy TS) for an *endo* relationship between EWGs with pi-systems and the diene
- The p-orbitals of the *endo* EWG interact favorably (stabilize TS) with the p-orbitals of the diene

University of Illinois
at Chicago

CHEM 232, Spring 2010

Out-Endo-Cis Rule

Out-Endo-Cis Rule: the *out* groups on the diene and *endo* EWG are *cis* in the product.

All other stereochemical relationships already discussed remain the same (i.e. groups that are *cis* in the dienophile are *cis* in the product).

Out-Endo-Cis Rule

Out-Endo-Cis Rule: the *out* groups on the diene and *endo* EWG are *cis* in the product.

All other stereochemical relationships already discussed remain the same (i.e. groups that are *cis* in the dienophile are *cis* in the product).

Out-Endo-Cis Rule

Out-Endo-Cis Rule: the *out* groups on the diene and *endo* EWG are *cis* in the product.

All other stereochemical relationships already discussed remain the same (i.e. groups that are *cis* in the dienophile are *cis* in the product).

Predict the Diels-Alder adduct when *trans*-1,3-pentadiene reacts with *trans*-1-nitropropene.

Organic Chemistry I

CHEM 232 University of Illinois

Organic Chemistry I at Chicago

Next Lecture...

Chapter 11: Sections 11.1-11.9

Quiz This Week...

- **1a.** Predict the Diels-Alder adduct, including correct regiochemistry & stereochemistry (10 pts)
- **1b.** Synthesis problem involving Diels-Alder reaction (10 pts)
- **2.** Draw the MO diagram for 1,3-butadiene (shown on Slide 12) (5 pts)