SN2 Reactions of Benzylic Halides

S_N2 of benzylic halides is faster than allylic halides. *How can this be explained if there is no carbocation intermediate?*

Allylic SN2 Faster: Two Arguments

1. steric hinderance (VWF) 2. molecular orbital interactions

CHEM 232, Spring 2010

University of Illinois
at Chicago

- LUMO of C-X bond can adopt a coplanar arrangement with porbitals of p-bond =
- **electron delocalization over three** orbitals =
- lower energy LUMO =
- **lower activation energy =**
- faster reaction
- *• Why does lower energy LUMO result in lower activation energy?*

Benzylic SN2 Faster: Two Arguments

1. steric hinderance (VWF) 2. molecular orbital interactions

- **LUMO of C-X bond can adopt a** coplanar arrangement with porbitals of p-bond =
- more p-orbitals in benzene than alkene =
- more electron donation into LUMO of C-Cl bond =
- weaker C-X bond =
- *• faster reaction*

University of Illinois
at Chicago

CHEM 232, Spring 2010

Preparation of Alkenylbenzenes

Same methods used to prepare alkenes can be used to prepare alkenylbenzenes

Elimination of Benzylic Hydrogens

Addition reactions to alkenes can also be applied to addition reactions to alkenylbenzenes

 $2-(m-Bromophenyl)-2-butene$

Hydrogen

 $2-(m-Bromophenyl)$ butane (92%)

Bromination

Styrene

University of Illinois
at Chicago

Bromine

1,2-Dibromo-1-phenylethane (82%)

Regioselective Addition of Electrophiles to Alkenylbenzenes

Addition to alkenylbenzenes favors (faster) formation of the more stable benzylic carbocation

Carbocation is secondary and benzylic and gives the observed product

Less stable carbocation is secondary but not benzylic

CHEM 232, Spring 2010

What is the *major regioisomeric* A halohydrin formed by the reaciton below?

ILLINOIS AT A CHEM 232, Spring 2010 Slide

What is the *major regioisomeric* halohydrin formed by the reaciton below?

University of
Illinois at Chicago

Illinois at Chicago CHEM 232, Spring 2010 **Slide**

Lecture 25: April 15 **7**

7

What is the *major regioisomeric* halohydrin formed by the reaciton below?

University of
Illinois at Chicago

Illinois at Chicago CHEM 232, Spring 2010 **Slide**

Organic Chemistry I

CHEM 232 University of Illinois

Organic Chemistry I at Chicago

Lecture 26 Organic Chemistry 1

Professor Duncan Wardrop

April 15, 2010

With respect to cyclononatetraene, which process below will form an aromatic species?

A. addition of one π -electron to give $C_9H_{10}^-$

University of
Illinois at Chicago

- B. addition of two π -electrons to give C₉H₁₀^{2–}
- C. loss of H^+ from the sp³-hybridized carbon to give $C_9H_9^-$
- D. loss of H+ from an sp2-hybridized carbon to give C₉H₉
- E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

CHEM 232, Spring 2010

With respect to cyclononatetraene, which process below will form an aromatic species?

- A. addition of one π -electron to give $C_9H_{10}^-$
- B. addition of two π -electrons to give C₉H₁₀^{2–}
- C. loss of H^+ from the sp³-hybridized carbon to give $C_9H_9^-$
- D. loss of H+ from an sp2-hybridized carbon to give C₉H₉
- E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

University of

CHEM 232, Spring 2010

With respect to cyclononatetraene, which process below will form an aromatic species?

- A. addition of one π -electron to give $C_9H_{10}^-$
- B. addition of two π -electrons to give C₉H₁₀^{2–}
- C. loss of H^+ from the sp³-hybridized carbon to give $C_9H_9^-$
- D. loss of H+ from an sp2-hybridized carbon to give C₉H₉
- E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

University of Thiversity of Things at Chicago

CHEM 232, Spring 2010

With respect to cyclononatetraene, which process below will form an aromatic species?

- A. addition of one π -electron to give $C_9H_{10}^-$
- B. addition of two π -electrons to give C₉H₁₀^{2–}
- C. loss of H^+ from the sp³-hybridized carbon to give $C_9H_9^-$
- D. loss of H+ from an sp2-hybridized carbon to give C₉H₉
- E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

University of
Illinois at Chicago

CHEM 232, Spring 2010

With respect to cyclononatetraene, which process below will form an aromatic species?

University of **CHEM 232, Spring 2010 Slide 12** A. addition of one π -electron to give $C_9H_{10}^-$ B. addition of two π -electrons to give C₉H₁₀^{2–} C. loss of H⁺ from the sp³-hybridized carbon to give C₉H₉ D. loss of H+ from an sp2-hybridized carbon to give C₉H₉ E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

With respect to cyclononatetraene, which process below will form an aromatic species?

University of **CHEM 232, Spring 2010 Slide 13** A. addition of one π -electron to give $C_9H_{10}^-$ B. addition of two π -electrons to give C₉H₁₀^{2–} C. loss of H⁺ from the sp³-hybridized carbon to give C₉H₉ D. loss of H+ from an sp2-hybridized carbon to give C₉H₉ E. loss of :H- from the sp3-hybridized carbon to give C₉H₉⁺

With respect to cyclononatetraene, which process below will form an aromatic species?

University of
Illinois at Chicago **CHEM 232, Spring 2010 Slide 14** A. addition of one π -electron to give $C_9H_{10}^-$ B. addition of two π -electrons to give C₉H₁₀^{2–}
C. loss of H⁺ from the sp³-hybridized carbon to C. loss of H⁺ from the sp³-hybridized carbon to give C₉H₉ D. loss of H+ from an sp2-hybridized carbon to give C₉H₉ E. loss of :H- from the sp3-hybridized carbon to give C9H9⁺

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Electrophilic Addition (AdE)

- In all addition reactions, the alkene is the nucleophile (Lewis base: weakly held π-electrons are used/donated to form stronger s-bonds).
- Reagent being added to the alkene is an electrophile (Lewis acid: accepting electrons to form s-bonds).

CHEM 232, Spring 2010

University of Illinois
at Chicago

Assuming that benzene reacts similarly to alkenes, which structure could *not* be an intermediate for Ad_E with the general electrophile depicted?

Assuming that benzene reacts similarly to alkenes, which structure could *not* be an intermediate for Ad_E with the general electrophile depicted?

Assuming that benzene reacts similarly to alkenes, which structure could *not* be an intermediate for Ad_E with the general electrophile depicted?

Formation of Arenium Ion

- **arenium ion:** carbocation formed from an aromatic ring
- formation of arenium ions is slow since the ground state is so stable (loss of aromaticity)
- requires very reactive (high energy) electrophiles

CHEM 232, Spring 2010

Arenium Ions

- **arenium ion:** also known as a s-complex
- arenium ions are allylic carbocations
- stabilized by resonance
- no aromatic

University of Illinois
at Chicago

CHEM 232, Spring 2010

Fate of Arenium Ion

Fate of Arenium Ion

24

Potential Energy Diagram

Reaction coordinate

CHEM 232, Spring 2010

Preparation of Electrophiles

nitronium ion

CHEM 232, Spring 2010

Nitration

Preparation of Electrophiles

CHEM 232, Spring 2010

Sulfonation

Preparation of Electrophiles

CHEM 232, Spring 2010

Bromination

Preparation of Electrophiles

Friedel-Crafts Alkylation

Preparation of Electrophiles

Friedel-Crafts Acylation

Summary of Some Representative Electrophilic Aromatic Substitutions

If anhydrides also react with $AICI₃$ to give acylium ions, what is the product for the acylation reaction below?

University of
Illinois at Chicago

CHEM 232, Spring 2010

If anhydrides also react with $AICI₃$ to give acylium ions, what is the product for the acylation reaction below?

If anhydrides also react with $AICI₃$ to give acylium ions, what is the product for the acylation reaction below?

Complication of Friedel-Crafts Alkylations

- rearrangement to more stable carbocations always predominates
- 1º alkyl chlorides (except ethyl chloride) cannot be employed in FC alkylations

$$
\begin{array}{ccc}\n\text{H} & \text{H} \\
\mid \text{C} & \text{C} & \text{C} \\
\mid & \text{C} &
$$

CHEM 232, Spring 2010

Reduction of Aryl Ketones

Clemmensen Reduction

H₂NNH₂, KOH O Wolf-Kishner Reduction

CHEM 232, Spring 2010

Alternative Strategy to Alkybenzenes

CHEM 232, Spring 2010

Alternative Strategy to Alkybenzenes

CHEM 232, Spring 2010

University of **UIC**

CHEM 232, Spring 2010

Organic Chemistry I

CHEM 232 University of Illinois

Organic Chemistry I at Chicago

Next Lecture...

Chapter 12: Sections 12.9-12.13

Quiz Next Week...

Synthesis Problem

Chapters 11 & 12