Lecture 27 Organic Chemistry 1

Professor Duncan Wardrop

April 20, 2010

Nitrosonium (not nitronium) cations can be generated by treating sodium nitrite (NaNO₂) with a strong acid. This relatively weak electrophile can undergo S_EAr with phenol. What is the *major* product when phenol reacts with a nitrosonium ion?

Nitrosonium (not nitronium) cations can be generated by treating sodium nitrite (NaNO₂) with a strong acid. This relatively weak electrophile can undergo S_EAr with phenol. What is the *major* product when phenol reacts with a nitrosonium ion?

University of UIC

Slide 3 Lecture 27: April 20

Which substituent would not activate an aromatic ring toward S_EAr (i.e. is not an electron donating group)?

University of

Illinois at Chicago

Strongly Activating Substituents

$$HNO_3$$
 H_2SO_4

$$k_{\rm rel} = 1.0$$

$$k_{\text{rel}} = 25$$

$$HNO_3$$
 H_2SO_4

$$k_{\rm rel} = 1,000$$

Review: Alkyl Groups are Activating and Ortho/Para Directing

$$\begin{array}{c} CH_{3} \\ O=N=O \end{array} \xrightarrow{nitration} \begin{array}{c} CH_{3} \\ NO_{2} \\ \end{array} \begin{array}{c} CH_{3} \\ O=N=O \end{array} \begin{array}{c} CH_{3} \\ O$$

Both ortho nitration and para nitration provide an arenium ion with a 3° carbocation contributor.

Strongly Activating Substituents

Why is a hydroxyl group (-OH) more electron donating and thus more activating than a methyl group?

Strongly Activating Substituents

Additional resonance structure for ortho & para S_EAr when substituent has a lone pair of electrons = more stable arenium ion = faster S_EAr (more activated)

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating **Activating**

Standard = H

Deactivating Strongly Deactivating Very strongly deactivating **Activating:**

greater electron donation = more stable arenium ion = faster S_EAr

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating

Strongly activating

Activating

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

 $-NH_2$

1° amine (amino)

−0⊦

alcohol (hydroxyl)

2° amine (alkylamino)

3° amine (dialkylamino)

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating

Activating

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

amide (acylamino)

ester (acyloxy)

ether (alkoxy)

Degree of Electron Donation

The acyl group on nitrogen increases the delocalization of the lone pair of electrons, thus decreasing its ability to be dontated to the aromatic ring.

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating

Activating

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

{−R

alkane (alkyl) ₹—Ar

aromatic (aryl)

alkene (alkenyl)

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

All are also orthol para directors

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

Deactivating

greater electron withdrawal = less stable arenium ion = slower S_EAr

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

Standard = H

Deactivating

Strongly Deactivating Very strongly deactivating

ortho/para directors

halogen (halo)

halomethyl

Although halogens deactivate aromatic rings through inductive effect, they are still *orthol* para directors since they have lone pairs.

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

O "Z'C H aldehyde (formyl)

O C R ketone (acyl) O C C OH carboylic acid (carboxyl)

Standard = H

Deactivating
Strongly Deactivating
Very strongly deactivating

acid chloride (acyl chloride)

nitrile (cyano) OH Sulfonic acid (sulfonyl)

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

Standard = H

Deactivating

Strongly Deactivating

Very strongly deactivating

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating

Strongly activating

Activating

Standard = H

Deactivating Strongly Deactivating

Very strongly deactivating

}—CF₃

trifluoromethyl

 $-NO_2$

nitro

Classification of Substituents in Electrophilic Aromatic Substitution (S_EAr)

Very strongly activating Strongly activating Activating

Standard = H

Deactivating

Strongly Deactivating Very strongly deactivating

All are also meta directors

List the aromatic compounds below in order of increasing rate of S_EAr.

A. a,b,c,d,e

B. e,d,c,b,a

C.b,e,d,c,a

D. d,e,c,b,a

E. c,a,b,d,e

$$\begin{array}{c|c} CH_3 & OOO \\ \hline \\ H_3COOCH_3 \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3OOCH_3 \\ \hline \\ CH_3 \end{array} \begin{array}{c} CH_3OOCH_3 \\ \hline \\ CH_3 \end{array}$$

All positions on the aromatic ring are equivalent.

$$\begin{array}{c|c} \mathsf{CH_3} & \mathsf{CH_3} \\ \hline & \mathsf{Br_2} \\ \hline & \mathsf{Fe} \\ \hline & \mathsf{NO_2} \end{array}$$

Directing effects reinforce each other; substitution here takes place *ortho* to the methyl group and *meta* to the nitro group.

Regioselectivity is controlled by most activating substituent.

$$CH_3$$
 HNO_3
 H_2SO_4
 $C(CH_3)_3$
 $C(CH_3)_3$

When activating effects are similar, substitution occurs ortho to smallest substituent (least sterics)

$$CH_3$$
 HNO_3
 H_2SO_4
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

When electronic effects are similar/same, steric effects control regioselectivity; here substitution occurs at least sterically hindered *ortho* position.

Predict the *major* product.

$$A \qquad H_3C \qquad O \qquad Br$$

SEAr in Synthesis

Which retrosynthesis is *not* feasable?

A.

B.

$$\bigotimes_{\mathsf{NO}_2} \longrightarrow \bigotimes_{\mathsf{NO}_2} \longrightarrow$$

C

$$\bigcap_{O_2N} \bigoplus_{CH_3} \longrightarrow \bigcap_{CH_3} \longrightarrow \bigcap_{CH_3} \longrightarrow \bigcap$$

D

Quiz This Week. . .

Synthesis Problem

Chapters 11 & 12