CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Lecture 28 Organic Chemistry 1

Professor Duncan Wardrop

April 22, 2010

Today's Lecture

Topics Covered:

- Aryl Halides Bonding, Physical Properties and Reactions
- 2. Nucleophilic Aromatic Substitution of Chlorobenzene
- 3. Nucleophilic Aromatic Substitution: Addition-Elimination
- 4. Floxcin Application of Nucleophilic Aromatic Substitution
- 5. Nucleophilic Aromatic Substitution: Elimination-Addition

What's the Difference Between Ar- and Ph-?

Phenyl refers specifically to this:

Aryl is a general term for <u>all</u> aromatic ring systems:

Chapter 23 Aryl Halides

23.1 Bonding in Aryl Halides

Aryl Halides

Aryl halides are halides in which the halogen is attached directly to an aromatic ring.

Carbon-halogen bonds in aryl halides are shorter and stronger than carbonhalogen bonds in alkyl halides.

Dissociation Energies of Selected Compounds

Resonance Picture

C-X bonds in aryl halides have more double bond character than C-X bonds in alkyl halides

23.2 Sources of Aryl Halides

Preparation of Aryl Halides

Halogenation of arenes (Section 12.5)

electrophilic aromatic substitution

Preparation of Aryl Halides

The Sandmeyer reaction (Section 22.17)

diazotization-nucleophilic aromatic substitution

Preparation of Aryl Halides

The Schiemann reaction (Section 22.17)

diazotization-nucleophilic aromatic substitution

Reaction of aryl diazonium salts with iodide ion (Section 22.18)

diazotization-nucleophilic aromatic substitution

23.3 Physical Properties of Aryl Halides

Physical Properties of Aryl Halides

resemble alkyl halides are essentially insoluble in water less polar than alkyl halides

23.4

Reactions of Aryl Halides: A Review and a Preview

Reactions Involving Aryl Halides

Electrophilic aromatic substitution (Section 12.14)

halide substituents are ortho-para directing & deactivating

Reactions Involving Aryl Halides

Electrophilic aromatic substitution (Section 12.14)

ADD DDT SYNTHESIS

Reactions Involving Aryl Halides

Formation of aryl Grignard reagents (Section 14.4)

Bromobenzene

Phenylmagnesium bromide We have not yet seen any nucleophilic substitution reactions of aryl halides.

Nucleophilic substitution on chlorobenzene occurs so slowly that forcing conditions are required.

Nucleophilic Substitution of Chlorobenzene

This reaction does not proceed via SN2......

Why is Chlorobenzene Unreactive?

the S_N^2 is not reasonable because the aromatic ring blocks back-side approach of the nucleophile. Inversion is not possible.

SN1 Also Unlikely: Aryl Cations are Highly Unstable

SN1 not reasonable because:

1) C—CI bond is strong; therefore, ionization to a carbocation is a high-energy process

2) aryl cations are highly unstable

SN1 Reaction is Possible with Very Powerful Leaving Groups such as Dinitrogen

This is a unique case: halides are not good enough leaving groups for this process to occur.

What is the Mechanism of This Reaction?

23.5

Nucleophilic Substitution in Nitro-Substituted Aryl Halides

Nucleophilic Aromatic Substitution (S_NAr)?

Electrophilic Aromatic Substitution

Nucleophilic Aromatic Substitution?

Electron-Deficient Haloarenes Undergo Nucleophilic Aromatic Substitution

In contrast to chlorobenzene, nitro-substituted aryl halides undergo nucleophilic aromatic substitution at reasonable temperatures

The More Electron-Deficient the Haloarene, the Faster the Substitution

1.0 7×10^{10} 2.4 x 10¹⁵ too fast to measure

Direct Displacement Doesn't Occur!

follows second-order rate law:

rate = k [aryl halide] [nucleophile]
inference:

both the aryl halide and the nucleophile are involved in rate-determining step

Effect of Leaving Group Upon Rate of SN2

During SN2 reactions, the C-X bond breaks during the rate-determining step

Reaction Rate Depends on X: I > Br > CI > F

C-F (485 kJ/mol), C-Cl (327 kJ/mol) C-Br (285 kJ/ml, C-I (213 kJ/mol)

Effect of Leaving Group in Nucleophilic Aromatic Substitution

*NaOCH₃, CH₃OH, 50°C

C-F (485 kJ/mol), C-Cl (327 kJ/mol) C-Br (285 kJ/ml, C-I (213 kJ/mol)

General Features of Mechanism

1. bimolecular rate-determining step in which nucleophile attacks aryl halide

- 2. rate-determining step precedes carbon-halogen bond cleavage
- 3. rate-determining transition state is stabilized by electron-withdrawing groups (such as NO₂)

23.6 The Addition-Elimination Mechanism of Nucleophilic Aromatic Substitution

Two step mechanism:

Step 1

nucleophile attacks aryl halide and bonds to the carbon that bears the halogen (slow: aromaticity of ring lost in this step)

Step 2

intermediate formed in first step loses halide (fast: aromaticity of ring restored in this step)
Addition-Elimination Mechanism

Step 1 - Addition

bimolecular consistent with secondorder kinetics;

first order in aryl halide, first order in nucleophile

Rate = $k [CH_3ONa]$ [arene]

Addition-Elimination Mechanism

..⊖ _..⊖ CH₃ CH₃C -Slow NO₂ NO₂

Step 1 - Addition

intermediate is negatively charged

formed faster when ring bears electron-withdrawing groups such as NO_2 because negative charge is stabilized.....

Stabilization of Addition Product by Electron-Withdrawing Group

Rapid Collapse of Cyclohexadienyl Anion Intermediate

Step 2 - Elimination

F > Cl > Br > I is unusual, but consistent with mechanism

carbon-halogen bond breaking does not occur until after the rate-determining step electronegative F stabilizes negatively charged intermediate

The Role of Leaving Groups

23.7 Related Nucleophilic Aromatic Substitution Reactions

Substitution of Hexafluorobenzene

Six fluorine

substitution.

Anionic Intermediate

Substitution of 2-Chloropyridine

2-Chloropyridine reacts 230,000,000 times faster than chlorobenzene under these conditions.

Substitution of 2-Chloropyridine

Anionic Intermediate

Compare 2-Chloropyridine with Chlorobenzene

Synthetic Application of Nucleophilic Aromatic Substitution

Ofloxacin

Ofloxacin (trade name Floxin) is a broadspectrum quinolone antibiotic

Ofloxacin

http://www.ofloxacin.com/

Synthetic Application of Nucleophilic Aromatic Substitution

Page 238 Furosemide

Ofloxacin (trade name Floxin) is a broadspectrum quinolone antibiotic

Prozac another good idea

Ofloxacin

http://www.ofloxacin.com/

23.8 Benzyne & the Elimination-Addition Mechanism of Nucleophilic Aromatic Substitution

Aryl Halides Undergo Substitution When Treated With Very Strong Bases

Ammonia: pKa = 34; b.p. = -33 °C Potassium Amide: strong base new substituent becomes attached to either the carbon that bore the leaving group or the carbon adjacent to it

ne substitution product

Cine Substitution Defined

cine-substitution

A substitution reaction (generally aromatic) in which the entering group takes up a position adjacent to that occupied by the leaving group. new substituent becomes attached to either the carbon that bore the leaving group or the carbon adjacent to it

Regiochemistry

Further Proof of Cine Substitution via ¹⁴C Label

(48%)

(52%)

Cine substitution product

Rationalization of Cine Substitution

Step 1 - Elimination

compound formed in this step is called benzyne

Benzyne - A Reactive Molecule With an Abnormal π-Bond

Benzyne has a reactive triple bond. It cannot be isolated in this reaction, but is formed as a reactive intermediate.

Benzyne - A Reactive Aromatic Molecule With An Abnormal, In-Plane π -Bond

overlapping sp² orbitals poor overap results in a weak, reactive bond

'Normal' C-C Triple Bond

Benzyne C-C Triple Bond

Arynes are Highly Reactive Electrophiles

Step 2 - Addition

Aryl Anions are Strongly Basic

Hydrolysis of Chlorobenzene

¹⁴C labeling indicates that the hightemperature reaction of chlorobenzene with NaOH proceeds via benzyne.

Substitution of Chlorobenzene Proceeds via Benzyne

Why the Temperature Difference?

All is Revealed

All is Revealed

All is Revealed

Benzyne can be prepared as a reactive intermediate by methods other than treatment of chlorobenzene with strong bases.

Another method involves loss of fluoride ion from the Grignard reagent of 1-bromo-2-fluorobenzene.

Other Methods for the Preparation of Benzyne

Preparation of Benzyne via Diazotization of Anthranilic Acid

See Question 23.23

23.9 Cycloaddition Reactions of Benzvne

What is a Cycloaddition?

Cycloaddition, n.

a reaction in which two or more unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic *adduct* in which there is a net reduction of the bond multiplicity.

The Diels-Alder Reaction Revisited

Electron-Deficient Alkynes Behave as Dienophiles

Benzyne Behaves as a Dienophile

Benzyne is a fairly reactive dienophile, and gives Diels-Alder adducts when generated in the presence of conjugated dienes.

Benzyne Participates in Diels-Alder Reactions

In the Absence of Dienes (or other nucleophiles) Benzyne Undergoes Dimerization and Trimerization

Today's Lecture

Topics Covered:

- 1. Aryl Halides Bonding, Physical Properties and Reactions
- 2. Nucleophilic Substitution of Chlorobenzene
- 3. Nucleophilic Aromatic Substitution: Addition-Elimination
- 4. Synthetic Application of Nucleophilic Aromatic Substitution
- 5. Nucleophilic Aromatic Substitution: Elimination-Addition
- 6. Benzyne: Generation, Bonding and Reactions

Information & Suggested Problems

Suggested Problems: 23.10-23.27