CHEM 232 Organic Chemistry I

University of Illinois UIC

Organic Chemistry 1 Lecture 5

Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 26, 2010

Self Test Question

Which of the following best depicts a π -bond?

The answer is A: A bonding interaction exists when two orbitals overlap "in phase" with each other. The electron density in π bonds lie above and below the plane of carbon and hydrogen atoms. B depicts a C-C sigma bond between two sp-hybridized carbon atoms. C represents a sigma bond formed via the head-to-head overlap of two p-orbitals.

2

Summary of Bond Types

University of UIC Illinois at Chicago	CHEM 232, Spring 2010	Slide 3 Lecture 5: January 26

3

Self Test Question

Rank the following hydrocarbons in order of *increasing* acidity.

A. ethane, ethylene, ethyne B. ethane, ethyne, ethylene C. ethyne, ethylene, ethane D. ethyne, ethane, ethylene E. none of the above

Hybridization and Acidity

CHEM 232 Organic Chemistry I

University of Illinois UIC

Chapter 3: Conformational Isomers of Alkanes

Sections: 3.1-3.3

Isomer Classification

Classification of Isomers

Model Activity

I. Make a model of butane.

2. Make a separate model of isobutane.

3. Using a *minimum number* of changes, convert your model of isobutane into butane.

CHEM 232, Spring 2010

Slide 9 Lecture 5: January 26

Self Test Question

What action did you have to perform to convert isobutane to butane?

If you have to break bonds to interconvert isomers, they are constitutional (structural) isomers A. rotate around C2-C3 bond **B. remove methyl group from C-2** C. add one methyl group to C-1 D. add one methyl group to C-2 E. rotate around C1-C2

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 10 Lecture 5: January 26

Rotation Around Single Bonds

conformations: different spatial arrangements of atoms generated by rotation around <u>single</u> bonds

conformational analysis: comparison of the relative energies of different conformational isomers and how they influence properties and reactivity

Measuring Relative Positions of Atoms

dihedral angle: angle between two intersecting planes; also called the torsion angle

plane can be defined by:

- 3 non-collinear points
- a line & a point not on that line
- two intersecting lines
- two parallel lines

Eclipsed Conformation of Ethane

- C-H bonds on adjacent carbons are parallel (same plane)
- H–C–C–H angle (dihedral angle) = 0°
- highest energy conformation

Staggered Conformation of Ethane

- C-H bond bisects (cuts in half) H-C-H angle on adjacent carbon
- H–C–C–H angle (dihedral angle) = 60°
- lowest energy conformation for ethane

Drawing Conformations: Wedge & Dash

Drawing Conformations: Sawhorse

- (acute or obtuse, but not 0°, 90° or 180°); skewed
- all atoms on central C–C bond are shown

Why a Sawhorse?

CHEM 232, Spring 2010

Slide 17 Lecture 5: January 26

17

Drawing Conformations: Newman Projection

Spatial Relationships in Staggered Conformations: Anti & Gauche

Torsion Angle = 0° *Eclipsed* Torsion Angle = 60° *Gauche* Torsion Angle = 180° *Anti-Periplannar*

anti: dihedral angle (torsion angle) = 180° *gauche*: dihedral angle (torsion angle) = 60°
these relationships apply to *any* groups on <u>adjacent</u> carbon atoms

University of UC CHEM 232, Spring 2010

Slide 19 Lecture 5: January 26

Comparison of Conformational Drawings of Eclipsed and Staggered Ethane

Self Test Question

What is the IUPAC name for molecule below?

CHEM 232, Spring 2010

University of

Illinois at Chicago

- A. 1,2,2,4,4-pentametnylhexane
- B. 3,3,5,5-tetramethylheptane
- C. 2-ethyl-2,4,4-trimethylhexane
- D. 1,2,4,4-tetramethylhexane
- E. 3,3-dimethyl-5,5-dimethylheptane

Slide 21

Self Test Question

Which set of molecules are conformational isomers?

The answer is C. Pair A are different compounds and not isomers; Pair B are identical and therefore neither isomers or conformers of one another; Pair D share the same formula but differ in their constitution and therefore cannot be conformers of one another.

22

Conformational Analysis of Ethane

staggered conformation more stable than eclipsed

torsional strain: torsion angles (dihedral angles) are other than 60° (gauche)

University of UIC Illinois at Chicago	CHEM 232, Spring 2010	Slide 23 Lecture 5: January 26
		2:

Two Conflicting Arguments Explain Preference for Staggered Conformation

- 1. **Steric Repulsion** Electrons in vicinal (adjacent) bonds destabilize (raise energy) in eclipsed conformations due to repulsion; they are closer.
- Hyperconjugation: Electrons in vicinal (adjacent) bonds are delocalized by overlap between bonding and anti-bonding orbitals

1. Steric Repulsion

Brief Revision of Molecular Orbitals

Molecular Orbitals Review:

- node = where orbitals change
 sign = no electrons found
- number of atomic orbitals = number of molecular orbitals
 - bonding orbital (σ) is lower in energy than both atomic orbitals
- anti-bonding orbital (σ*) = less electron density between nuclei than if no bond at all; electrons from each atom repel each other
- even though an anti-bonding (s*) orbital may not be filled with electrons; it is still present in the molecule

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 26 <u>Lecture 5: Jan</u>uary 26

2. Vicinal Hyperconjugation

2. Hyperconjugation: Role in Conformations

hyperconjugation: donation (transfer) of electrons from a filled orbital to an empty orbital; orbitals must <u>overlap</u> to allow transfer

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 28 Lecture 5: January 26

Conformational Analysis of Butane

Van der Waals Strain (Steric Strain) in Staggered Conformations of Butane

Anti

- The gauche conformation of butane is 3 kJ/mol less stable than the anti.
- The gauche conformation is destabilized by van der Waals strain (also called steric strain); repulsive van der Waals force between methyl groups
- **van der Waals strain** = destabilization that results from atoms being too close together; nuclear-nuclear & electron-electron repulsions dominate

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 30 Lecture 5: January 26

Van der Waals Strain (Steric Strain)

- conformation of butane with two methyl group eclipsed is the least stable (highest in energy)
- destabilized by both torsional strain (eclipsed vicinal bonds) and van der Waals strain (atoms close together)

CHEM 232, Spring 2010

Slide 31 Lecture 5: January 26

Conformation of Higher Alkanes

- anti arrangements of C-C-C-C units
- all vicinal (adjacent) bonds = gauche or anti
- minimize torsional strain; minimize steric strain
- described as "zig-zag" backbone

CHEM 232 Organic Chemistry I

University of Illinois UIC

Conformational Isomers of 3-5 Carbon Cycloalkanes

Sections: 3.4-3.6

Self Test Question

Geometry: What are the angles in a regular pentagon?

Self Test Question

Geometry: What are the angles in a regular hexagon?

Heats of Combustion of Cycloalkanes

Angle strain (Baeyer strain): increase in energy associated with bond angles that deviate from tetrahedral (109.5°)

Cycloalkane	Shape	Geometric Angles	Difference from 109.5°	Heat of Combustion (-ΔH) per CH ₂ Group
cyclopropane		60°	49.5°	167 kcal/mol
cyclobutane		90°	19.5°	163 kcal/mol
cyclopentane		108°	1.5°	157 kcal/mol
cyclohexane		120°	10.5°	156 kcal/mol

University of UIC Illinois at Chicago	CHEM 232, Spring 2010	Slide 36
		Lecture 5: January 26

Cyclopropane & Banana Bonds!

- only planar cycloalkane
- bent C-C bonds: sp³ orbitals unable to overlap along internuclear axis; weaker C-C σ-bonds
- angle strain: 60° is a large deviation from 109.5°
- torsional strain: all bonds are eclipsed

Slide 37 Lecture 5: January 26

Conformations of Cyclobutane

Nonplanar "puckered" Conformation

- torsional strain reduced in puckered conformation
- less angle strain than cyclopropane

Conformations of Cyclopentane

- planar conformation least stable; all bonds eclipsed
- some torsional strain relieved in envelope and half-chair
- envelope & half-chair have similar energies; interconvert rapidly

Self Test Question

Which of the following conformations of cyclohexane would you expect to have the highest heat of combustion?

Quiz This Week

- Topic = Chapter 2
- Alkanes, Alkenes & Alkynes
- IUPAC Nomenclature
- Oxidation Numbers
- Heats of Combustion
- Bonding, Hybridization (ethene)

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Next Lecture...

Chapter 3: Sections 3.7-3.12 You are responsible for sections 3.13-3.15