

University of Illinois UIC at Chicago

Organic Chemistry 1 Lecture 8

Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m.

February 04, 2010

Self Test Question

Which of the following transformations is unlikely to generate the product indicated?

Compound "b." is a primary alcohol, which are insufficiently reactive to undergo reaction with hydrogen chloride. Primary alcohols do, however, react with thionyl chloride (SOCI2) to form chlorides and so the transformation shown in "c" will proceed successfully Compound "a" is tertiary alcohol and consequently reacts with HCI.

Substitution Reaction

CHEM 232 Organic Chemistry I

University of Illinois at Chicago

Mechanisms of Substitution Reactions

Sections: 4.8-4.11

Substitution: How Does it Happen?

mechanism: a generally accepted series of elementary steps that show the order of bond breaking and bond making

elementary step: a bond making and/or bond breaking step that only involves one transition state

Ingold-Hughes Mechanistic Designators

Nucleophilic Substitution (S_N1)

Step One Proton Transfer (Protonation)

rate of individual step =k x [alcohol] x [HX]; two reactants = bimolecular (2nd order)

oxonium ion is an intermediate in the overall reaction

Step One Potential Energy Diagram

Step One Proton Transfer (Protonation)

transition state: energy

maximum along reaction coordinate for one elementary step; usually involves partial bond making and partial bond breaking

intermediate: energy

minimum along the reaction coordinate; species with a finite lifetime; neither reactant, nor product

Hammond Postulate:

structure of the transition state "looks" most like its closest energy reactant or intermediate

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 8 Lecture 8: February 4

Mechanism: Nucleophilic Substitution (S_N1)

Step Two Dissociation (Ionization)

slowest (rate determining) step in entire mechanism; endothermic

rate=k[oxonium ion]; one reactant = unimolecular (1st order)

Step Two Potential Energy Diagram

Step Two Dissociation (Ionization)

University of

Illinois at Chicago

- largest activation energy (Ea)
- endothermic, slowest
- carbocation intermediate is much higher in energy than an oxonium ion
- carbocations do not have a full octet, whereas oxonium ions do
- structure of transition state most resembles the closest energy neighbor, the carbocation (Hammond Post.)

CHEM 232, Spring 2010

Slide 10 Lecture 8: February 4

Mechanism: Nucleophilic Substitution (S_N1)

Step Three Carbocation Capture

Step Three Potential Energy Diagram

Step Three Carbocation Capture

- fast step because small activation energy; positive and negative atoms bond fast
- products are much lower in energy since they are neutral; exothermic reaction
- transition state looks most like its closest neighbor, the carbocation intermediate (very little C-Cl bond formation at transition state) (Hammond Postulate)

University of UIIInois at Chicago

CHEM 232, Spring 2010

Slide 12 Lecture 8: February 4

Nucleophiles Add to Electrophiles

nucleophile: nucleus loving; Lewis base; electron pair donor; forms bonds with a nucleus that can accept electrons; does <u>not</u> necessarily have to be negatively charged; has available, filled orbitals!

electrophile: electron loving; Lewis acid; electron pair acceptor; forms bonds by accepting electrons from other atoms; does <u>not</u> necessarily have to be positively charged; has available, empty orbitals!

Cation is Electrophile empty $2p_z$ orbital

Chloride is Nucleophile filled *n* orbital (: = lone pair)

University of UIC CHEM 232, Spring 2010 Slide 13 Illinois at Chicago UIC Lecture 8: February 4

Complete Mechanism

Complete Potential Energy Diagram

Naming the Mechanism: Ingold Notation

Self Test Question

Consider the $S_N 1$ mechanism for the formation of 2bromobutane. Which structure best represents the <u>highest</u> energy *transition state* in this mechanism?

Structure of Carbocations

carbocations can be stabilized by inductive effects and hyperconjugation

- carbocations are high energy *intermediates*; hard, but not impossible to isolate
- carbon is sp²-hybridized with a single, unoccupied 2p_z orbital; 6 valence electrons
- planar structure : three bonds to carbon are at 120° angles from each other and 90° to empty *p*-orbital; VSEPR
- nucleophiles add to either lobe of the empty p-orbital; since it is flat, there is no preference to which side nucleophile adds

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 18 Lecture 8: February 4

I. Inductive Effects

electron withdrawal or electron donation that is transmitted through σ -bonds; polarization of σ -bonds

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- C-C σ-bonds are more polarizable, therefore donate more electron density through σ-bonds
- more C-C σ-bonds
 more stable carbocation

University of UIC Illinois at Chicago	CHEM 232, Spring 2010	Slide 19 Lecture 8: February 4
--	-----------------------	--

I. Inductive Effects

Since C-C σ -bonds are more polarizable than C-H bonds, the additional of more alkyl groups leads to stabilization of the cation

3° cation

CHEM 232, Spring 2010

Slide 20 Lecture 8: February 4

2. Hyperconjugation

stabilizing interaction that results from the interaction of the electrons in a σ -bond (C–H or C–C bond) with an adjacent empty (or partially filled) orbital. Leads to the formation of an extended molecular orbital that increases the stability of the system

- stabilization results from $\sigma\text{-}donation$ to empty p orbital of planar carbocation

- electron donation through σ-bonds toward carbocation delocalizes charge (spreads out)
- methyl cations cannot be stabilized by hyperconjugation since σ-bonds are perpendicular to the empty p orbital

l° cation

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 21 Lecture 8: February 4

2. Hyperconjugation

2° carbocation

2 C-H bond

hyperconjugative

donors

3° carbocation3° carbocation3 C-H bond
hyperconjugative
donors3 C-C or C-H bond
hyperconjugative
donorsdonors3 C-C or C-H bond
hyperconjugative
donorsSlide 23

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Lecture 8: February 4

i>Clicker Question

Rank the following carbocations in order of increasing <u>stability</u>?

Stabilizing Effects on Carbocations

How Carbocation Stability Effects Rate of Reaction

Why are 1° & 2° Alcohols Less Reactive?

simple 1° and 2° alcohols do not undergo substitution by the $S_N 1$ mechanism since methyl and primary carbocations are too high in energy to be intermediates in nucleophilic substitution reactions

an alternative mechanism is required......

Bimolecular Substitution - S_N2 Mechanism

- C-O bond breaks at the same time the nucleophile (Br) forms the C-X bond
- RDS is nucleophilic attack; bimolecular, therefore Ingold notation = $S_N 2$
- fewer steps does not mean faster reaction

Self Test Question

Which rate equation below best describes the rate determining step (RDS) in an $S_N 2$ mechanism?

- A. rate = k[oxonium ion]
- B. rate = k[carbocation]
- C. rate = *k*[oxonium ion][halide]
- D. rate = *k*[carbocation][halide]
- E. rate = k[alcohol][HX]

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 29 Lecture 8: February 4

University of Illinois UIC at Chicago

Halogenation of Alkanes Methods and Mechanism

Sections: 4.14-4.17 You are responsible for Section 4.16 & 4.18 (Be able to perform this calculation!)

Halogenation of Alkanes

R—H	$+ X_2 -$	\rightarrow R $-X$ +	- H—	-X		
Alkane	Halogen	Alkyl halide	Hydroger	n halide		
$CH_3CH_3 +$	$Cl_2 \xrightarrow{420^{\circ}C}$	CH ₃ CH ₂ Cl	+	HC1		
Ethane	Chlorine	Chloroethane (78) (ethyl chloride)	%) Hydi	rogen chloride		
Fluorination (F ₂): Highly Exothermic (Explosive !)						
$\frac{1}{2}$ Chlorination (Cl ₂): Exothermic						
crea eacti	Bromination (B	omination (Br ₂): Slightly Exothermic				
	odination (I ₂):	Endothermic				
University of UI	C	HEM 232, Spring 2010	Le	Slide 31 ecture 8: February 4		

Radical Chain Mechanism

Step One Initiation via Homolysis

Radical Chain Mechanism

- Cl radical abstracts H atom from most substituted C atom
- alkyl radical is an intermediate in the mechanism
- alkyl radicals are stabilized by same factors that stabilize carbocations
- note that radical is generated propagation!

Radical Chain Mechanism

- alkyl radical abstract a halogen from a 2nd X₂ molecule
- chlorine radical product continues on in chain; starts the cycle over again by abstracting hydrogen from another alkane
- radical chain mechanisms are faster than a stepwise mechanism which would require initiation in each step

Complete Mechanism

Structure of Alkyl Radical Intermediates

alkyl radicals can be stabilized by inductive effects and hyperconjugation; similar to carbocations

- radicals are high energy intermediates;
 7 valence electrons; cannot be isolated
- sp²-hybridized; contain one empty porbital; unpaired electron in the porbital;
- approximately planar: three bonds to carbon are at ~120° angles from each other and ~90° to half-filled p-orbital
- stabilized by inductive effects and hyperconjugation
- Stability: 3° > 2° >> 1° > CH₃

University of UIC Illinois at Chicago

CHEM 232, Spring 2010

Slide 36 Lecture 8: February 4

Stabilizing Effects on Alkyl Radicals

Bromination is More Selective Than Chlorination

Lecture 8: February 4

Quantifying Selectivity

Self Test Question

Determine the predicted product distribution for **A** in the following clorination.

CHEM 232 Organic Chemistry I University of Illinois UIC at Chicago

Next Lecture...

Chapter 5: Sections 5.1-5.9