CHEM 232 Organic Chemistry I

University of Illinois UIC

Lecture 9 Organic Chemistry 1

Prof. Duncan J. Wardrop

02/09/2010

Functional Group Clarification

Although they can be viewed as ethers, epoxides are classified as distinct, three-atom functional groups......

q. Why?

a. Epoxides display distinctly different reactivity to ethers, which arises from their considerable ring strain.

Defining Regioselectivity

Regioselectivity (regioselective)

A regioselective reaction is one in which one direction of bond making or breaking occurs preferentially over all other possible directions. Reactions are termed completely (100%) regioselective if the discrimination is complete, or partially (<100%), if the product of reaction at one site predominates over the product of reaction at other sites. The discrimination may also semi-quantitatively be referred to as high or low regioselectivity.

IUPAC Compendium of Chemical Terminology 2nd Edition (1997)

Mechanism of Alkane Chlorination

Note that typically, this type of chain reaction can continue for 1,000,000 steps for each initiation event.

4

Factors Governing Regioselectivity

Remember that regioselectivity is only an issue in those substrates that more than one type of C-H bond. Cyclohexane, for example, undergoes monochlorination to yield on cyclohexyl chloride.

5

Useful Bond Dissociation Energies: C–H (1°; 423 kJ/mol); C–H (2°; 410 kJ/mol); C–H (3°; 397 kJ/mol); H–Cl (431 kJ/mol); H–Br (366 kJ/mol); Br–Br (192 kJ/mol)

Bromination is More Selective Than Chlorination

Δ Ea (bromination) > Δ Ea (chlorination) Bromination is <u>more</u> selective.

	R ₃ CH (tertiary, 3°)	R ₂ CH ₂ (secondary, 2°)	RCH ₃ (primary, 1°
chlorination	5.2	3.9	1.0
bromination	1640	82	1.0

Hammond Postulate

- chlorine radicals are higher in energy than bromine radicals =
- transition states in chlorination are earlier =
- look more like reactants =
- less difference in TS energy =
- less selective =
- greater mixture
- ------
- bromine radicals are lower in energy than chlorine radicals =
- transition states in bromination are later =
- look more like products (radical interm.) =
- greater difference in TS energy =
- more selective =
- less of a mixture

Quantifying Selectivity of Halogenation

Self Test Question

Determine the predicted product distribution for **A** in the following chlorination.

Relative Rates for 3° and °1 positions = 1640 and 9, respectively. Absolute yields = 99.4% and 0.6%. The Answer is A.

8

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Chapter 5 Nomenclature & Stereoisomerism in Alkenes

Section 5.1-5.11

The Terms Alkene and Olefin are Synonymous

ethylene C₂H₄

- Alkenes are hydrocarbons that are characterized by a C-C double bond
- Also called "olefins"
- General molecular formula $= C_n H_{2n}$
- Described as *unsaturated* since they have two fewer H atoms than equivalent alkanes

CHEM 232, Spring 2010

Slide 10 Lecture 9: February 9

Index of Hydrogen Deficiency (IHD)

IHD is synonymous with *degrees of unsaturation* and indicates the number of double/triple bonds and/or rings in a molecule

IHD = 1 (1 double bond)

Calculating IHD

1. Hydrocarbons (C_nH_x) and Oxygenates (C_nH_xO_y): Ignore O IHD = $\frac{(2n+2) - X}{2}$

2. Compounds with N (C_nH_xN_y): Subtract # N from # H

IHD =
$$\frac{(2n+2) - (X-Y)}{2}$$

3. Halogens (C_nH_xX_y): Add # Halogens to # H

IHD =
$$\frac{(2n+2) - (X+Y)}{2}$$

IHD & The Chemistry of Margarine

Employing equation 1 (slide 12).....

CHEM 232, Spring 2010

Slide 13 Lecture 9: February 9

IUPAC Naming of Alkenes

Steps:

- 1. Number longest chain that includes both alkene carbons so that they have the lowest locants.
- 2. Replace -ane ending of parent alkane with -ene (alkene).
- 3. In the name, list the locant of only the <u>first</u> alkene carbon.

Conventions/Rules:

- alkenes have higher priority over alkane and halide substituents when numbering the longest chain
- alcohols have higher priority over alkenes when numbering the longest chain
- locant may be placed in front of parent name (e.g. 2-pentene) or in front of suffix (e.g. pent-2-ene).

IUPAC Naming of Alkenols

- I. Number longest chain that contains <u>both</u> the alkene and the alcohol and so that the alcohol group has lowest locant value.
- 2. Replace -ane ending of parent alkane with -ene (alkene).
- 3. In the name, list the locant of only the <u>first</u> alkene carbon.

Conventions/Rules:

- alkenes have higher priority over alkane and halide substituents when numbering the longest chain
- alcohols have higher priority over alkenes when numbering the longest chain
- locant may be placed in front of parent name (e.g. 2-pentene) or in front of suffix (e.g. pent-2-ene).
- when "ene" does not occur at the end of a name, drop the last "e"

IUPAC Functional Group Priorities for Numbering Longest Chains

Increasing Priority	Priority	Functional Group	Suffix	Substituent Name		
	3	halide	n.a.	halo		
	3	alkane	-ane	alkyl		
	2	alkene	-ene	-en (or alkenyl)		
	1	alcohol (-OH)	-ol	hydroxy		
We will add to this table as we encounter more functional groups in IUPAC nomenclature.						
Universi	ty of Illinois at Chicago	Slide 16 Lecture 9: Februar				

9

Common Alkenyl Group Names

17

Alkene Structure & Bonding

- carbons in an alkenes are sp² hybridized •
- bond angles are ~120° around sp² hybridized carbons
- geometry around sp²-carbons is planar (flat) •

Double Bond = 1π -Bond + 1σ -Bond

Bond Rotation of Alkanes vs. Alkenes

Note that while rotation around C=C bonds is restricted, rotation about the C-H and C-C single bonds is not.

20

Alkenes Resist Rotation Round C=C Bond

- π-bond prevents full rotation around double bond
- 90° rotation would break π-bond to generate *diradical*
- substituents on alkene "locked" in spacial relationships
- some rotation is possible through pyramidalization (more on this topic later)

Photolysis Mediates C=C Bond Rotation

Geometrical Stereoisomers of Alkenes

Constitutional vs. Configurational Isomers

Stereoisomers

E-Z Nomenclature for Alkenes

- Groups are ranked according to atomic number
- Higher atomic number = higher rank
- *Z* (zusammen) = together; highest priority group on each alkene carbon on same side
- *E* (entgegen) = opposite; highest priority group on each alkene carbon on opposite sides

Cahn-Ingold-Prelog (CIP) **Rules for Prioritizing**

- when geminal atoms are identical, compare "forward" atoms attached to these on the basis of atomic weight (list in decreasing order)
- work outward (one atom at a time) until point of difference is reached

Cahn-Ingold-Prelog (CIP) Rules for Prioritizing

- an atom that is multiply bonded to another atom is listed as two separate atoms for nomenclature purposes
- remember to list attached atoms in decreasing order of atomic weight
- highest priority = highest atomic weight at first point of difference

Why Alkene Geometry Matters

Geometry influences molecular shape and, in turn, physical, chemical & biological properties....

Z Configuration

Vascular targeting agent

Combretastatin A4 (CA-4)

E Configuration

Biologically Inactive!

epi-Combretastatin A4 (CA-4)

University of Illinois at Chicago

CHEM 232, Spring 2010

Slide 29 Lecture 9: February 9

S.A. bush willow tree

IUPAC: Stereoisomeric Alkenes

CHEM 232 Organic Chemistry I University of Illinois UIC

Relative Stabilities of Alkenes

Sections 5.5-5.6

Relative Stabilities of Alkenes

Observations:

- more stable = lower in energy = lower heat of combustion
- cis alkenes higher in energy than trans alkenes
- more alkyl group on alkene = more stable

Relative Stabilities of Alkenes

I. Steric Effects

van der Waals strain strain between *cis* groups

(Z)-2,2,5,5-tetramethylhex-3-ene

(less stable)

(E)-2,2,5,5-tetramethylhex-3-ene

(more stable)

Energy Difference = 44 kJmol^{-1}

Relative Stabilities of Alkenes

2. Substituent Effects

alkyl groups stabilize alkenes through donation (via induction and hyperconjugation) to the more electronegative sp²-hybridized carbon atoms

CHEM 232 Organic Chemistry I

University of Illinois UIC at Chicago

Preparation of Alkenes Elimination

Sections: 5.8-5.11

β-Elimination Reactions

Dehydrogenation

- limited to industrial synthesis of ethylene, propene, 1,3-butadiene and styrene
- important economically, but rarely used in laboratory-scale syntheses
- living systems utilize enzymes to catalyze this process

Strong Acids Catalyze the Dehydration of 2° & 3[°] Alcohols

- H₂SO₄ and H₃PO₄ are most common acids used for dehydration: protonation of OH group is first step
- dehydration is reversible (hydration) in aqueous acid (Chapter 6)

Industrial Example of Dehydration

Dehydration can be "Coupled" with Other Chemical Transformation

Loratidine (Claritin[®])

Two-step, one-pot transformation involves a Friedel-Crafts reaction (see, Chapter 12) and dehydration of the resulting 3° alcohol

Rate of Alcohol Dehydration Mirrors Ease of Carbocation Formation

rate of dehydration = $3^{\circ} > 2^{\circ} > 1^{\circ}$ alcohol

Self Test Question

Predict the product for the following reaction scheme.

Self Test Question

Predict the product for the following reaction scheme.

Quiz This Week

- Topic = Chapter 4
- Bonding in Alcohols & Alkyl Halides
- Bonding of Alkyl Halides from Alcohols & HX
- The $S_N 1 \& S_N 2$ Mechanisms
- Carbocations: Structure, Bonding & Stability
- Halogenation of Alkanes
- Radicals: Structure, Bonding & Stablity
- Mechanism of Alkane Halogenation

CHEM 232 Organic Chemistry I University of Illinois UIC at Chicago

Next Lecture...

Chapter 5: Sections 5.12-5.18

Reminder - Bring ID to Exam!