• P6.5) The pressure dependence of \(G \) is quite different for gases and condensed phases. Calculate \(G_m(C, \text{ solid, graphite, 100 bar, 298.15 K}) \) and \(G_m(\text{He, g, 100 bar, 298.15 K}) \) relative to their standard state values. By what factor is the change in \(G_m \) greater for \(\text{He} \) than for graphite?

\[
\Delta G_m = G_m(P, T^0) - G_m(P^0, T^0) = \int_{P_0}^{P} V_m dP^n
\]

\[
\Delta G_m(\text{graphite}) = [Q1] \\
\Delta G_m(\text{He}) = [Q2]
\]
P6.8) Calculate ΔG^0 and ΔA^0 for the reaction $\text{CH}_4(\text{g}) + 2\text{O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) + 2\text{H}_2\text{O}(l)$ at 298 K from the combustion enthalpy of methane and the entropies of the reactants and products.

- ΔG^0 reaction is easy to obtain.
- $\Delta G^0 = \Delta H^0_{\text{reaction}} - T\Delta S^0_{\text{reaction}}$

The question is how to get ΔA^0 reaction

- $\Delta A^0_{\text{reaction}} = \Delta G^0_{\text{reaction}} - \Delta(PV)$

Q. How do you get this $\Delta(PV)$?
We had a similar question between U and H.

6.7 Expressing Chemical Equilibrium in Terms of the μ_i

- $m_A A + m_B B + m_C C \ldots \rightarrow m_M M + m_N N + m_O O$
- We write the reaction in an abbreviated form as $-m_A A - m_B B - m_C C \ldots + m_M M + m_N N + m_O O = 0 \rightarrow$
- $\sum v_i X_i = 0$ ($v_i = -m_i$ if X_i is a reactant; $v_i = m_i$ if X_i is a product).
- dG associated with change in n_i is given by $dG = \sum \mu_i dn_i$ (*)

Now, we introduce **extent of the reaction** ξ ($0 \leq \xi \leq 1$)

- $n_i = n_i^{\text{initial}} + \xi v_i$ \rightarrow $dn_i = v_i \, d\xi$

- $n_i = n_i^{\text{initial}} + \xi v_i = m_i(1 - \xi)$ for reactant
- $= m_i \xi$ for product

when 100ξ % of reactants reacted.
HW Q2 (text P126-127)

• $2\text{NO}_2(\text{g}) \leftrightarrow \text{N}_2\text{O}_4(\text{g})$

\[(2 - 2\xi) \text{ mole} \quad \xi \text{ mole} \]

\[G_{\text{pure}} = (2 - 2\xi)G_{m,\text{NO}_2}^0 + \xi G_{m,\text{N}_2\text{O}_4}^0 \]

\[G_{\text{mixture}} = G_{\text{pure}} + \Delta G_{\text{mix}} \]

\[\Delta G_{\text{mix}} = n_{\text{NO}_2}RT\ln(x_{\text{NO}_2}) + n_{\text{N}_2\text{O}_4}RT\ln(x_{\text{N}_2\text{O}_4}) \]

Q1. How much is $\Delta G_{\text{reaction}}^0$?

$\Delta G_{\text{reaction}}^0 = [Q1]$

Q2. How much is $\Delta G_{\text{reaction}}$?

$\Delta G_{\text{reaction}} = [Q2]$

Q3. Where is the equilibrium point?

HW Q3 (text P126-127)

• $2\text{NO}_2(\text{g}) \leftrightarrow \text{N}_2\text{O}_4(\text{g})$

\[(2 - 2\xi) \text{ mole} \quad \xi \text{ mole} \]

\[G_{\text{pure}} = (2 - 2\xi)G_{m,\text{NO}_2}(T) + \xi G_{m,\text{N}_2\text{O}_4}(T) \]

\[G_{\text{mixture}} = G_{\text{pure}} + \Delta G_{\text{mix}} \]

\[\Delta G_{\text{mix}} = n_{\text{NO}_2}RT\ln(x_{\text{NO}_2}) + n_{\text{N}_2\text{O}_4}RT\ln(x_{\text{N}_2\text{O}_4}) \]

Q1. How do you read $G_{m,\text{N}_2\text{O}_4}$ from the graph below?

Q2. How about G_{m,NO_2}?

\[T = 350 \text{ K} \]

\[x_{\text{NO}_2} = \frac{n_{\text{NO}_2}}{n_{\text{NO}_2} + n_{\text{N}_2\text{O}_4}} = \frac{(2-2\xi)}{(2-\xi)} \]

\[x_{\text{N}_2\text{O}_4} = \frac{n_{\text{N}_2\text{O}_4}}{n_{\text{NO}_2} + n_{\text{N}_2\text{O}_4}} = \frac{\xi}{(2-\xi)} \]

Q3. Where is the equilibrium point?
6.7 Expressing Chemical Equilibrium in Terms of the μ_i

- $m_A A + m_B B + m_C C \ldots \rightarrow m_M M + m_N N + m_O O$
- We write the reaction in an abbreviated form as
 - $-m_A A - m_B B - m_C C \ldots + m_M M + m_N N + m_O O = 0$ \rightarrow
- $\sum \nu_i X_i = 0$ ($\nu_i = -m_i$ if X_i is a reactant; $\nu_i = m_i$ if X_i is a product).
- dG associated with change in n_i is given by
 \[dG = \sum \mu_i \nu_i \, dn_i \quad (*) \]

Now, we introduce **extent of the reaction** ξ ($0 \leq \xi \leq 1$)

\[n_i = n_i^{\text{initial}} + \xi \nu_i \rightarrow dn_i = \nu_i \, d\xi \]

From (*)

\[dG = \sum \mu_i \nu_i \, d\xi = \Delta G_{\text{reaction}} \, d\xi \]

\[(\partial G / \partial \xi)_{T,P} = \sum \nu_i \mu_i = \Delta G_{\text{reaction}}. \]

$(\partial G / \partial \xi)_{T,P} = 0 \rightarrow$ System reaches equilibrium.

Reaction Gibbs Energy (p127)

- **For a compound**, consider a formation reaction from elements (A, B): $A + 2B \rightarrow C$
 \[\Delta G_f^0 = G_{m,C}^0 - G_{m,A}^0 - 2G_{m,B}^0 \]

- **For a reaction** $(P_A=P_B=P_C=P_D=1\text{bar})$: $A + 2B \rightarrow C + 2D$
 \[\Delta G_{\text{reaction}} = G_{m,C}^0 + 2G_{m,D}^0 - G_{m,A}^0 - 2G_{m,B}^0 \]
 \[= \Delta G_{f,C}^0 + 2 \Delta G_{f,D}^0 - \Delta G_{f,A}^0 - 2 \Delta G_{f,B}^0 \]

In general,
 \[\Delta G_{\text{reaction}} = \sum \nu_i \Delta G_{f,i}^0 \]

- $\Delta G_f^0 = G_{m,\text{product}}^0 + \sum \nu_i G_{m,\text{reactant}}^0$

For a pure element, $\Delta G_f^0 = [Q1]$
6.8 Calculating \(\Delta G_{\text{reaction}} \) and Introducing the Equilibrium Constant for a Mixture of Ideal Gas

\[\begin{align*}
\Delta G_{\text{reaction}} &= \sum v_i \Delta G_{f.i} = 3 \Delta G_{f.C}(P_C) + \Delta G_{f.D}(P_D) \\
&\quad - 2 \Delta G_{f.A}(P_A) - \Delta G_{f.B}(P_B) \\
&= 3 \mu_0^C + 3R \ln(P_C/P^0) + \mu_0^D + R \ln(P_D/P^0) \\
&\quad - 2 \mu_0^A - 2R \ln(P_A/P^0) - \mu_0^B - R \ln(P_B/P^0) \\
&= 3 \mu_0^C + \mu_0^D - 2 \mu_0^A - \mu_0^B
\end{align*} \]

\[\begin{align*}
\Delta G_{\text{reaction}} &= \sum v_i \Delta G_{f.i} = \Delta G_{\text{reaction}}^0 + [Q1] \\
Q. \text{What is } \Delta G_{\text{reaction}}^0 ?
\end{align*} \]

6.8 Continued

\[\begin{align*}
\Delta G_{\text{reaction}} &= \sum v_i \Delta G_{f.i} = \Delta G_{\text{reaction}}^0 + \sum v_i R \ln(P_i/P^0) \\
&= \Delta G_{\text{reaction}}^0 + RT \ln K_p \\
\text{Thermodynamic Equilibrium Const}
\end{align*} \]

\[K_p = \exp(-\Delta G_{\text{reaction}}^0/RT) \] (at 298K)

When \(A \leftrightarrow B \) \(\Rightarrow K_p = P_A/P_B = \exp(-\Delta G^0/RT) \)
6.9 Calculating the Equilibrium Partial Pressure in a Mixture of Ideal Gases

\[\text{Cl}_2(g) \rightleftharpoons 2\text{Cl}(g) \]

For the reaction above, derive an expression for \(K_p \) in terms of \(n_0 \), \(\xi \), and \(P \) assuming the reaction starts from \(n_0 \) mole of \(\text{Cl}_2 \).

\[
K_p = \exp\left(-\frac{\Delta G_{\text{reaction}}^0}{RT}\right)
\]

\[
\Delta G_{\text{reaction}}^0 = 2\Delta G_{f, \text{Cl}}^0 - \Delta G_{f, \text{Cl}_2}^0
\]

6.10 Variation of \(K_p \) with \(T \)

\[
\frac{d\ln(K_p)}{dT} = -\frac{d(\Delta G_{\text{reaction}}^0 / RT)}{dT} = -\frac{1}{R} \frac{d(\Delta G_{\text{reaction}}^0 / T)}{dT} = \frac{\Delta H_{\text{reaction}}^0}{RT^2}
\]

\[
\begin{align*}
\rightarrow dT &> 0 \text{ & } \Delta H > 0 \rightarrow d\ln(K_p) > 0 \\
\text{More product} &\\
\end{align*}
\]

\[
\begin{align*}
\rightarrow dT &> 0 \text{ & } \Delta H < 0 \rightarrow d\ln(K_p) < 0 \\
\text{Less product} &
\end{align*}
\]

\[
\Delta\ln(K_p) = \ln\{K_p(T_{\text{fin}})\} - \ln\{K_p(T_{\text{ini}})\} = \int_{T_{\text{ini}}}^{T_{\text{fin}}} \frac{\Delta H_{\text{reaction}}^0}{RT^2} \, dT
\]

\[
= \left[-\frac{\Delta H_{\text{reaction}}^0}{RT} \right]_{T_{\text{ini}}}^{T_{\text{fin}}} = -\frac{\Delta H_{\text{reaction}}^0}{RT} \left[\frac{1}{T_{\text{fin}}} - \frac{1}{298} \right]
\]

\[
\begin{align*}
\ln\{K_p(T_{\text{fin}})\} &= \ln\{K_p(298)\} - \frac{\Delta H_{\text{reaction}}^0}{R} \left[\frac{1}{T_{\text{fin}}} - \frac{1}{298} \right]
\end{align*}
\]

\[
\Delta G_{\text{reaction}}(T)/RT_f = -\Delta G_{\text{reaction}}^0/RT_0
\]
7.10 Conformational Transitions of Biological Polymers

\[N \leftrightarrow D \]
\[C_{\text{in}}(1-f_D) \quad C_{\text{in}}f_D \]

\[K = \frac{C_D}{C_N} = \frac{f_D C_{\text{in}}}{f_N C_{\text{in}}} = \frac{f_D}{1-f_D} \]

At \(T_m \rightarrow K = 1 \) & \(f_D = 0.5 \)

- **HW 7 P6.18** Many biological macromolecules undergo a transition called *denaturation*. Denaturation is a process whereby a structured, biological active molecule, called the native form, unfolds or becomes unstructured and biologically inactive. The equilibrium is \(N \) (Native) \(\leftrightarrow \) \(D \) (Denatured)

- For a protein at \(pH = 2 \), the enthalpy change associated with denaturation is \(\Delta H^\circ = 418.0 \text{ kJ mol}^{-1} \) and the entropy change is \(\Delta S^\circ = 1.3 \text{ kJ K}^{-1} \text{ mol}^{-1} \).

 a. Calculate the Gibbs energy change for the denaturation of the protein at \(pH = 2 \) and \(T = 303 \text{ K} \). Assume the enthalpy and entropy are temperature independent between 298.15 and 303 K.

 \[\Delta G_D^\circ (298K) = \left[Q1 \right] \]

 \[\Delta G_D(T_2) = T_2 \left[\Delta G_D(T_1) / T_1 \right] + \left[Q2 \right] \]

 b. Calculate the equilibrium constant for the denaturation of protein at \(pH = 2 \) and \(T = 303 \text{ K} \).

 \[K_D(T_2) = \exp(- \Delta G_D/(RT_2)) \]

 c. Based on your answers for parts (a) and (b), is protein structurally stable at \(pH = 2 \) and \(T = 303 \text{ K} \)?
6.11 Equilibria Involving Ideal Gases and Solid or Liquid Phase

- We consider equilibrium in a thermal decomposition of CaCO₃:
 \[\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \]

In this case, gas (CO₂) is in equilibrium with two solid phase (CaCO₃ & CaO)

\[\Delta G_{\text{reaction}} = \sum \gamma_i \mu_i = 0 \]

\[0 = \mu_{\text{eq}(\text{CaO},s,P)} + \mu_{\text{eq}(\text{CO}_2,g,P)} - \mu_{\text{eq}(\text{CaCO}_3,s,P)} \]

\[0 = \mu^0_{\text{eq}(\text{CaO},s)} + \mu^0_{\text{eq}(\text{CO}_2,g)} - \mu^0_{\text{eq}(\text{CaCO}_3,s)} + RT \ln \left(\frac{P_{\text{CO}_2}}{P^0} \right) \]

\[\Delta G^0_{\text{reaction}} = -RT \ln \left(\frac{P_{\text{CO}_2}}{P^0} \right) \]

6.12 Expressing the Equilibrium Constant in Terms of Mole Fraction

\[K_p = \left(\frac{P_{\text{eq}}}{P^0} \right)^{nc} \left(\frac{P_{\text{eq}}}{P^0} \right)^{nD} = \left(\frac{X_{\text{eq}}P}{P^0} \right)^{nc} \left(\frac{X_{\text{eq}}P}{P^0} \right)^{nD} \]

\[= \left(\frac{X_{\text{eq}}}{X^\Delta} \right)^{nc} \left(\frac{X_{\text{eq}}}{X^\Delta} \right)^{nD} \left(P \right)^{mc+mD-mA-mB} \]

\[= K_X \left(\frac{P}{P^0} \right)^{\Delta \nu} \]

\[K_X = K_p \left(\frac{P}{P^0} \right)^{\Delta \nu} \]
HW7 P6.14 Consider the equilibrium
\[\text{NO}_2(g) \rightleftharpoons \text{NO}(g) + \frac{1}{2}\text{O}_2(g) \]
One mole of \(\text{NO}_2(g) \) is placed in a vessel and allowed to come to equilibrium at a total pressure of 1 bar. An analysis of the contents of the vessel gives the following results:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>(P_{\text{NO}}/P_{\text{NO}_2})</th>
<th>(\frac{P_{\text{NO}}}{P_{\text{NO}_2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 K</td>
<td>0.872</td>
<td>0.872</td>
</tr>
<tr>
<td>800 K</td>
<td>2.50</td>
<td>2.50</td>
</tr>
</tbody>
</table>

\[P_{\text{NO}} = x_{\text{NO}} = n_{\text{NO}} = \frac{y}{1-y} \]

a. Calculate \(K_p \) at 700 and 800 K.

\[
K_p = \frac{\left(\frac{p(\text{NO})}{p^{1/2} \text{p}} \right)^{1/2} \left(\frac{p(\text{O}_2)}{p} \right)^{1/2}}{\left(\frac{p(\text{NO}_2)}{p} \right)^{1/2}} = \frac{p(\text{NO})}{p(\text{NO}_2)} \times \frac{p(\text{O}_2)}{p} = \frac{(x_{\text{NO}})(x_{\text{O}_2})}{x_{\text{NO}_2}} \times \frac{p^{1/2}}{p^{1/2}}
\]

b. Calculate \(\Delta G^0_{\text{reaction}} \) for this reaction at 298.15 K, assuming that \(\Delta H^0_{\text{reaction}} \) is independent of temperature.

HW8 P6.15

a. Calculate \(K_p \) and \(\Delta H^0 \) at 1000 K.

\[\text{CO(g) + H}_2\text{O(g)} \leftrightarrow \text{CO}_2(g) + \text{H}_2(g) \]

At 1000 K, the composition of the reaction mixture is

<table>
<thead>
<tr>
<th>Substance (g)</th>
<th>CO(g)</th>
<th>H2(g)</th>
<th>CO2(g)</th>
<th>H2O(g)</th>
<th>Mole %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>27.1</td>
<td>27.1</td>
<td>22.9</td>
<td>22.9</td>
<td>Mole %</td>
</tr>
</tbody>
</table>

b. Given the answer to part (a), use the \(\Delta H_J^0 \) of the reaction species to calculate \(\Delta G^0_{\text{reaction}} \) at 298.15 K. Assume that \(\Delta H^0_{\text{reaction}} \) is independent of temperature.

\[K_p = \frac{x_{\text{CO}} x_{\text{H}_2} x_{\text{H}_2\text{O}}}{x_{\text{CO}} x_{\text{H}_2\text{O}} x_{\text{CO}} x_{\text{H}_2\text{O}}} \times \left[\text{Q1} \right] = \left[\text{Q2} \right] \]

\[\Delta G_{\text{reaction}}(T) = -RT \ln K_p(T) \]

\[
\ln \{ K_p(T_{\text{mo}}) \} = \ln \{ K_p(298 \text{ K}) \} - \frac{\Delta H^0_{\text{reaction}}}{R} \left[\frac{1}{T_{\text{mo}}} - \frac{1}{298 \text{ K}} \right]
\]
6.7 Expressing Chemical Equilibrium in Terms of the μ_i

- $m_A A + m_B B + m_C C \ldots \rightarrow m_M M + m_N N + m_O O$
- We write the reaction in an abbreviated form as
 $-m_A A - m_B B - m_C C \ldots + m_M M + m_N N + m_O O = 0$
- $\sum \nu_i X_i = 0 \ (\nu_i = -m_i$ if X_i is a reactant; $\nu_i = m_i$ if X_i is a product).

Q11 From the following data at 298.15 K and 1 bar, choose the closest value to the standard formation enthalpy for CO(g).

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Reaction enthalpy (kJmol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A × $\text{Fe}_2\text{O}_3(s) + 3\text{C(graphite)} \rightarrow 2\text{Fe(s)} + 3\text{CO(g)}$</td>
<td>493</td>
</tr>
<tr>
<td>B × $\text{FeO(s)} + \text{C(graphite)} \rightarrow \text{Fe(s)} + \text{CO(g)}$</td>
<td>156</td>
</tr>
<tr>
<td>C × $\text{CO}_2(g) \rightarrow \text{CO(g)} + 1/2\text{O}_2(g)$</td>
<td>283</td>
</tr>
<tr>
<td>D × $\text{Fe(s)} + 1/2\text{O}_2(g) \rightarrow \text{FeO(s)}$</td>
<td>-266</td>
</tr>
</tbody>
</table>

$2A \text{Fe(s)} + 3A \text{CO(g)} - A \text{Fe}_2\text{O}_3(s) -3A \text{C(grap)} = 0$

$B \text{Fe(s)} + B \text{CO(g)} - B \text{FeO(s)} -B \text{C(grap)} = 0$

$C \text{CO(g)} + C/2 \text{O}_2(g) - C \text{CO}_2(g) = 0$

$D \text{FeO(s)} - D \text{Fe(s)} - D/2 \text{O}_2(g) = 0$

$(2A + B - D) \text{Fe(s)} + (3A + B + C) \text{CO(g)} - A\text{Fe}_2\text{O}_3 - (3A + B) \text{C(grap)} = 0$

$(-B + D) \text{FeO(s)} - C \text{CO}_2(g) + (C/2 - D/2) \text{O}_2(g) = 0$
7.1 What Determines the Relative Stability of the Solid, Liquid, and Gas Phase

• Phase: Solid \rightarrow Liquid \rightarrow Gas

Phase refers to “a form of matter that is uniform with respect to chemical composition and the state of aggregation”

Q. What determines most stable phase?

[Answer here?]

How does μ in three phases depends on T?

$$d\mu(T, P) = -S_m dT + V_m dP = -S_m dT$$

$$0 < S_{m, solid}(T) < S_{m, liquid}(T) < S_{m, gas}(T)$$

Assuming S_m is constant,

$$\mu(T, P) = \mu(0, P) - S_m T$$

Q1. Where is the melting point?

Q2. Which line represents $\mu_{solid}(T)$?

Q3. How do you explain the phase transition from solid to liquid using the figure?
$\mu(T)$ plot when P is increased

- How are T_m and T_b affected by P?

$\mu(T, P + \Delta P) \approx \{\mu(0, P) + V_m \Delta P\} - S_m T$

$V_m^{\text{Gas}} > V_m^{\text{Liquid}} > V_m^{\text{Solid}}$

$V_m^{\text{Gas}} > V_m^{\text{Solid}} > V_m^{\text{Liquid}}$

Sublimation and Triple Point

Sublimation Temp

$\text{Solid} \rightarrow \text{Gas}$

Solid, Gas, and Liquid Coexist

Triple Point

Triple Point Temp
7.2 The Pressure-Temperature Phase Diagram

Isobar T Increases
- S \rightarrow L \rightarrow G
 (P higher than triple point Pressure)
- b) S \rightarrow G
 (P lower than triple point P)

Isotherm; P Increases
- c) G \rightarrow L \rightarrow S
 (T higher than triple point T)

L-G coexists above critical point
(T $\geq T_c$, P $\geq P_c$)

P7.3) Within what range can you restrict the values of P and T if the following information is known about CO$_2$? Use Figure 7.8 to answer this problem.

a. As the temperature is increased, the solid is first converted to the liquid and subsequently to the gaseous state.

b. As the pressure on a cylinder containing pure CO$_2$ is increased from 65 to 80 atm, no interface delineating liquid and gaseous phases is observed.

c. Solid, liquid, and gas phases coexist at equilibrium.

a. 5.11 atm $< P < 73.75$ atm
7.4 Providing a Theoretical Basis for the P-T Phase Diagram

- When two phase \(\alpha \) and \(\beta \) are in equilibrium at a constant \(P \) and \(T \),
 \[\mu_\alpha(P, T) = \mu_\beta(P, T) \]
 When \((P,T) \) is changed by \((dP,dT) \) while keeping the equilibrium,
 \[\mu_\alpha(P, T) + d\mu_\alpha = \mu_\beta(P, T) + d\mu_\beta \]
 Thus,
 \[d\mu_\alpha = d\mu_\beta \]
 \[-S_{m\alpha}dT + V_{m\alpha}dP = -S_{m\beta}dT + V_{m\beta}dP \]
 \[0 = (S_{m\beta} - S_{m\alpha})dT - (V_{m\beta} - V_{m\alpha})dP = \Delta S_m dT - \Delta V_m dP \]

Clapeyron equation

\[\frac{dP}{dT} = \frac{\Delta S_m}{\Delta V_m} \]

d\(P/dT \) for fusion and vaporization

For Fusion

Average of \(\Delta S_m \) and \(\Delta V_m \) for Ag, AgCl, Ca, CaCl\(_2\), KCl, Na, NaCl

\[\left(\frac{dP}{dT} \right)_{\text{fusion}} = \frac{\Delta S_{m\text{fusion}}}{\Delta V_{m\text{fusion}}} \sim 22 \text{ J mol}^{-1} \text{ K}^{-1} \]
\[\pm 4 \times 10^{-6} \text{ m}^3 \text{ mol}^{-1} \]
\[= \pm 5.5 \times 10^6 \text{ Pa K}^{-1} \]

\((dT/dP)_{\text{fusion}} \sim 0.05 \text{ K bar}^{-1} \)

Negative sign only for \(H_2O \)

For Vaporization

Average of \(\Delta S_m \) and \(\Delta V_m \) in Table 7.3

\[\left(\frac{dP}{dT} \right)_{\text{vap}} = \frac{\Delta S_{m\text{vap}}}{\Delta V_{m\text{vap}}} \sim 95 \text{ J mol}^{-1} \text{ K}^{-1} \]
\[2 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} \]
\[= 5.0 \times 10^3 \text{ Pa K}^{-1} = 5 \times 10^2 \text{ bar K}^{-1} \]

\((dT/dP)_{\text{vap}} \sim 20 \text{ K bar}^{-1} \)
7.5 Using the Clapeyron Equation to Calculate Vapor Pressure as a Function of \(T \)

For Vaporization

\[
\left(\frac{dP}{dT} \right)_{vap} = \frac{\Delta S_{m}^{vap}}{\Delta V_{m}^{vap}} = \frac{\Delta H_{m}^{vap}}{\Delta V_{m}^{vap}T} = \frac{\Delta H_{m}^{vap}}{V_{m,\text{gas}}T} = \frac{P \Delta H_{m}^{vap}}{RT^{2}}
\]

\[
\frac{1}{P} dP = \frac{\Delta H_{m}^{vap}}{nR} \frac{1}{T^{2}} dT
\]

Clausius-Clapeyron equation

\[
\int_{P_{\text{ini}}}^{P_{\text{fin}}} \frac{1}{P} dP = \int_{T_{\text{ini}}}^{T_{\text{fin}}} \frac{\Delta H_{m}^{vap}}{R} \frac{1}{T^{2}} dT
\]

\[
\ln \frac{P_{\text{fin}}}{P_{\text{ini}}} = -\frac{\Delta H_{m}^{vap}}{R} \left(\frac{1}{T_{\text{fin}}} - \frac{1}{T_{\text{ini}}} \right)
\]

P6.17 If the reaction \(\text{Fe}_2\text{N}(s) + \frac{3}{2}\text{H}_2(g) \rightarrow 2\text{Fe}(s) + \text{NH}_3(g) \) comes to equilibrium at a total pressure of 1 bar, analysis of the gas shows that at 700 and 800 K, \(P_{\text{NH}_3}/P_{\text{H}_2} = 2.165 \) and 1.083, respectively, if only \(\text{H}_2(g) \) was initially present in the gas phase and \(\text{Fe}_2\text{N}(s) \) was in excess.

a. Calculate \(K_p \) at 700 and 800 K.
b. Calculate \(\Delta S_{\text{reaction}}^{0} \) at 700 and 800 K and \(\Delta H_{\text{reaction}}^{0} \) assuming that it is independent of temperature.
c. Calculate \(\Delta G_{\text{reaction}}^{0} \) for this reaction at 298.15 K.

- \(\text{Fe}_2\text{N}(s) + \frac{3}{2}\text{H}_2(g) \rightarrow 2\text{Fe}(s) + \text{NH}_3(g) \)

 \[
 N_{\text{ini}} - \xi = n_{\text{ini}} - 3/2 \xi \rightarrow 2\xi - \xi
 \]

 a. \(K_p = \exp(-\Delta G^{0}/RT) = (P_{\text{NH}_3}/P_{\text{H}_2})/(P_{\text{H}_2}/P_{0})^{3/2} \)

 \[
 P_{\text{NH}_3} = x_{\text{NH}_3} P_{0}; P_{\text{H}_2} = (1-x_{\text{NH}_3}) P_{0}
 \]

 \[
 P_{\text{NH}_3}/P_{\text{H}_2} = 2.165 = x_{\text{NH}_3}/(1-x_{\text{NH}_3}) \rightarrow x_{\text{NH}_3} @ 700K
 \]

 b. \(\ln(K_p(800K)) - \ln(K_p(700K)) = -(\Delta H/R)(1/800K - 1/700K) \)

 \[
 \Delta G = \Delta H - T \Delta S. \quad \text{From} \quad (*) \rightarrow \Delta G = -RT \ln(K_p)
 \]
P6.24) At $T = 298$ K and pH=3 chymotrypsinogen denatures with $\Delta G^\circ = 30.5 \text{ kJ mol}^{-1}$, $\Delta H^\circ = 163 \text{ kJ mol}^{-1}$, and $\Delta C_{P,m} = 8.36 \text{ kJ K}^{-1} \text{ mol}^{-1}$. Determine ΔG° for the denaturation of chymotrypsinogen at $T = 320. \text{ K}$ and pH=3. Assume $\Delta C_{P,m}$ is constant between $T = 298 \text{ K}$ and $T = 320. \text{ K}$.

First, we calculate ΔS^0 at $T = 298 \text{ K}$:

\[
\Delta S^0 = \frac{(\Delta G^0 - \Delta H^0)}{T} \rightarrow \Delta H(320K) = \Delta C_{P,m} \Delta T + \Delta H^0
\]

\[
\Delta S(320K) = \int_{T_{ini}}^{T_{fin}} \frac{\Delta H}{T} dT + \Delta S^0 = \Delta S^0 + \Delta C_{P,m} \ln \left(\frac{T_{fin}}{T_{ini}}\right)
\]

P6.30) You have containers of pure H$_2$ and He at 298 K and 1 atm pressure. Calculate ΔG_{mixing} relative to the unmixed gases of

a. a mixture of 10 mol of H$_2$ and 10 mol of He.

b. a mixture of 10 mol of H$_2$ and 20 mol of He.

$\Delta G_{mixing} = n_A RT \ln(x_A) + n_B RT \ln(x_B)$

c. Calculate ΔG_{mixing} if 10 mol of pure He are added to the mixture of 10 mol of H$_2$ and 10 mol of He.

$\Delta G_{mixing} = \Delta G_b - \Delta G_a$
• **P6.38** Consider the equilibrium in the reaction

\[3O_2 \leftrightarrow 2O_3 \] with \[\Delta H_{\text{reaction}}^{\circ} = 285.4 \times 10^3 \text{ J mol}^{-1} \] at 298 K.

Assume that \[\Delta H_{\text{reaction}}^{\circ} \] is independent of temperature.

• **a.** Without doing a calculation, predict whether the equilibrium position will shift toward reactants or products as the pressure is increased.

• **b.** Without doing a calculation, predict whether the equilibrium position will shift toward reactants or products as the temperature is increased.

• **c.** Calculate \(K_p \) at 550 K.

• **d.** Calculate \(K_x \) at 550 K and 0.500 bar.

\[K_p(298K) = \exp(-\Delta G/RT) \]

\[\text{Use } \ln(K_p(550K)) = \ln(K(298K)) - \Delta H\{1/T_2-1/T_1\}/R \]

\[K_p = K_x(P/P_0)^{\Delta v} \quad K_x = (P/P_0)^{-\Delta v} K_p \]