This equation has no explicit (exact) solution. The following is an approximate solution known as the steady- state approximation that is valid for most of the time course of the reaction

This equation means that the [ES] is approximately constant throughout most of the time of the reaction excluding a very short initial time as shown in Fig 10.17. The rate equation for [ES] can then be solved algebraically for [ES] as follows

The velocity can now be expressed in terms of the rate constants, the [S] and the $[\rm E]_T$ as follows

The equation can be simplified as follows

The velocity can further be expressed in terms of the maximum velocity (V_{max}) that occurs when all of the E is in the form of an ES complex

This last equation is known as the Michaelis-Menten equation.

Let's show that the M-M equation is consistent with the observed rates.

First consider v at 'low' [S], i.e., when the [S] << K_M as follows

Second consider v at "high" [S], i.e., when the [S] >> K_M as follows

A kinetic analysis provides important information about the mechanism of an enzymecatalyzed reaction.

The kinetic scheme for example indicates that the substrate must form a complex with the enzyme before it can be converted to products and that complex formation is reversible.

Consider further the possible significance of $\ensuremath{\mathsf{K}_{\mathsf{M}}}\xspace$

If $k_{-1} >> k_{cat}$, then $K_M = k_{-1}/k_1$

 $k_{-1}/k_1 = K_{S_1}$ the <u>dissociation</u> <u>constant</u> for the ES complex In this case, K_{M} is a measure of the affinity of the enzyme for the substrate.

The larger the value of K_M , the smaller is the affinity of the enzyme for substrate (because K_S is a dissociation constant).

The smaller the value of K_M , the larger is the affinity of the enzyme for the substrate.