The stabilization is only possible if the planes defined by the sp^{2} bonding units of the carbonyl C and N atoms are coplanar as shown.

If the two bonding units are not coplanar, the $2 p_{z}$ orbitals of the O, C and N atoms would not all overlap as shown for the hybrid.

This means that rotation about the peptide bond is restricted.

As a result of the lack of free rotation, cis and trans peptide bonds are possible as follows:

The peptide bond in proteins is in the trans form. This form is more stable because there is less steric interaction between R groups of adjacent a.a..

Fig 6-4 shows a representation of a polypeptide chain with planar peptide groups.

Fig 6-4 also indicates that only the single bonds to the α-carbon atoms in the polypeptide backbone are free to rotate.

Thus it is rotation about these bonds which gives rise to the conformations of proteins.

Angles of rotation about the $\mathrm{C}_{\alpha}-\mathrm{C}$ and $\mathrm{C}_{\alpha}-\mathrm{N}$ bonds are referred to by the letters Ψ (psi) and Φ (phi) respectively as shown in the handout figure.
$\Psi=180^{\circ}$ when adjacent peptide planes are coplanar with N_{1} and N_{2} trans to the $\mathrm{C}_{\alpha}-\mathrm{C}$ bond.
$\Phi=180^{\circ}$ when adjacent peptide planes are coplanar with carbonyl C_{1} and C_{2} trans to the N C_{α} bond.

The handout figure shows an amino acid with Ψ and Φ angles of 180°.

Let's also define positive and negative angles of rotation.

While looking along a bond from one atom to another, a clockwise rotation of the farthest atom corresponds to a positive rotation.

Rotation of carbonyl C_{2} (farthest atom) about the C_{α} in the direction shown in the figure corresponds to a positive rotation.

Rotation of N_{1} (farthest atom) about the C_{α} in the direction shown in the figure corresponds to a positive rotation.

If the Φ and Ψ angles are constant throughout a polypeptide chain, the polypeptide will have the shape of a helix.

A given set of Φ and Ψ angles will determine the type of helix, i.e., n, the number a.a. per turn, p , the pitch, and d, the distance traversed by one a.a. along the helix axis.

The handout figure defines n, p and d .

The same n can result from other angles of Φ and Ψ as shown below

For a given value of Φ and different values of Ψ, helices of different n will result as represented below

Not all values of Φ and Ψ are equally favorable because of steric interactions within the polypeptide chain.

When $\Phi=0^{\circ}$ and $\Psi=180^{\circ}$, there is a large steric interaction between adjacent carbonyl 0 atoms as shown in the handout figure.

