NUCLEIC ACIDS

DNA and RNA

Nucleotide and nucleotide structures and nomenclature Nucleotide base tautomerization Purine and pyrimidine acid/base equilibria Covalent bonding between nucleotides in DNA and RNA Acid/base ionization of the phosphodiester group

Secondary structure of DNA

Complementarity and base pairing

Structural features of B form

Handedness

Rotation per base pair

Base pairs per turn

Rise per base pair

Pitch

Conformation of glycosidic bond

Sugar Pucker

Stability and helix-coil transition

Tertiary structure of DNA
Supercoiling of circular DNA

Flow of genetic information

Transcription

Translation/genetic code

PROTEINS

Peptide bond Amino Acids Structure **Abbreviations** Stereochemistry Acid dissociation equilibria pK_a values Hydrophobic interactions Hydrogen bonding Salt bonding Metal ligand bonding pΙ Primary structure Secondary structure Peptide backbone bond angles/distances cis and trans configurations Φ and Ψ angles Ramachandran plot Stabilization by peptide H-bonding Helices **β-sheets** Turns Relation to composition and sequence Tertiary structure Stabilization by side-chain interactions Hydrophobic effect/Micelle model Hydrogen bonding Salt bonds Metal ligand interactions Disulfide bonds

Quaternary structure

Structure and Function

Reversible O₂ binding to Mb, Hb Hyperbolic and sigmoidal binding curves Allosteric effects

CARBOHYDRATES

Monosaccharides

Aldoses/ketoses

D, L configuration

Open chain and hemiacetal/hemiketal forms

Furanose and pyranose forms

Haworth representation

 α , β anomers

Structure

Stability

Disaccharides

Acetal/ketal formation

 α/β configuration

Haworth representation

Polysaccharides

Amylose and cellulose

LIPIDS

Classification

Fatty Acids

Saturated

Unsaturated/configuration

Chain length

Nomenclature

Melting Point

Triacylglycerols (Triglycerides)

Structure

Components

Properties

Function

Polar lipids

Glycerophospholipids

Components

Sphingolipids

Components

Properties

Function

Lipid bilayer structure

ENZYME KINETICS

Velocity vs. reactant (substrate) plot Uncatalyzed 1st order reaction Enzyme catalyzed reaction

Dependence of V_{max} on enzyme concentration Kinetic scheme for enzyme catalyzed reaction Derivation of Michaelis-Menten equation

Steady-state approximation

 K_{M}

 V_{max}

Relation of K_M to K_S and substrate affinity Determination of K_M , V_{max} from Lineweaver-Burke plot

Competitive inhibition

V vs. [S] plot

Kinetic scheme

Equation for V

Determination of K_I

Relation of K_I values to structure and substrate binding site

Noncompetitive inhibition

V vs. [S] plot

Kinetic scheme

Equation for V

Determination of K_I

Site on enzyme associated with non-competitive inhibition

Enzyme catalysis

Catalytic triad in chymotrypsin

Role of His, Ser, Asp

Thiol proteases

Role of cys mercapto group

Enzyme regulation

Allosteric control by small molecules

Sigmoidal dependence of v on substrate

Changes in quaternary structure

Control by proteins

Covalent Modification

Proteolytic activation