
RECOMBINANT PROTEIN EXPRESSION

PROTEIN PURIFICATION BY COLUMN CHROMATOGRAPHY

INSTRUMENTATION

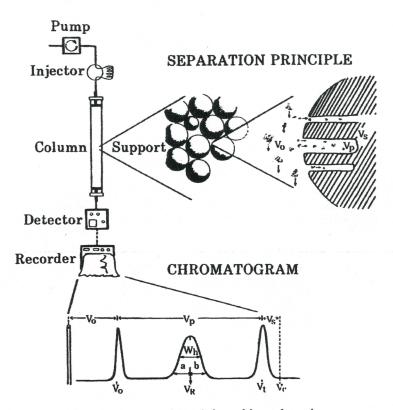
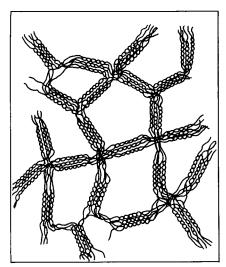



Figure 3-1. Fundamentals of gel filtration. Solutes injected into the column are separated according to decreasing size due to incompatibility between the solute dimension and the pore size of the support. $V_0 = \text{void}$ volume between the support particles, $V_p = \text{pore}$ volume and $V_s = \text{matrix}$ volume of the support. $V_R = \text{elution volume}$ of the solute, $V_t = \text{total liquid volume}$ of the column and $V_c = \text{total geometric volume}$ of the column. Column plate number $N = 5.54 \times (V_R/w_h)^2$ where w_h is the peak width at half peak height and b/a = peak symmetry at 10% peak height.

COLUMN PACKING MATERIALS (STATIONARY PHASE, ABSORBENT)

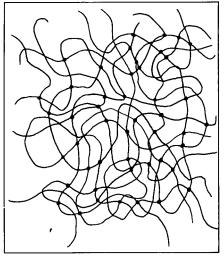
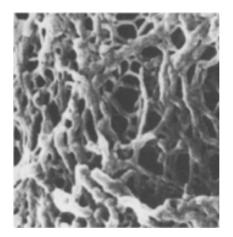



Figure 2.2. Schematic representation of agarose gel network (right), in comparison with a network such as Sephadex that is formed from random chains at similar polymer concentration. Note that the aggregates in agarose gels may actually contain 10 to 10⁴ helices rather than the smaller numbers shown here. Reprinted with permission from Arnott, et al (1974), J. Molec. Biol. 90, 269. Copyright by Academic Press Inc. (London) Ltd.

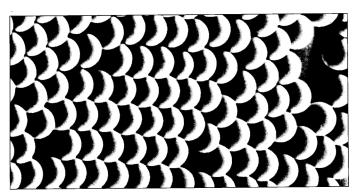


Fig. 8. An electron micrograph of MonoBeads showing their distinct monodispersity.

Scanning electro micrograph of 2% agarose gel

CHROMATOGRAPHIC SEPARATION: ANALYSIS OF CHROMATOGRAM

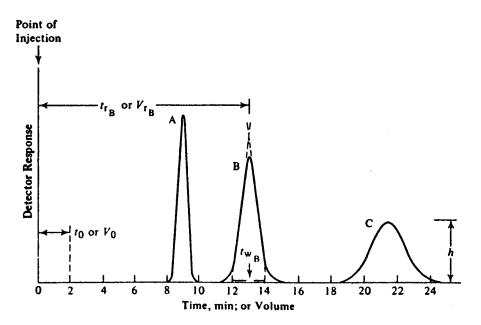
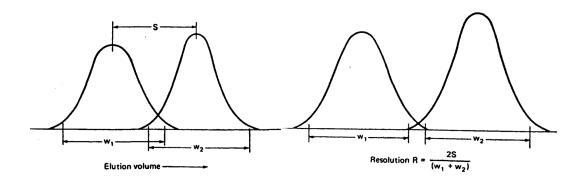
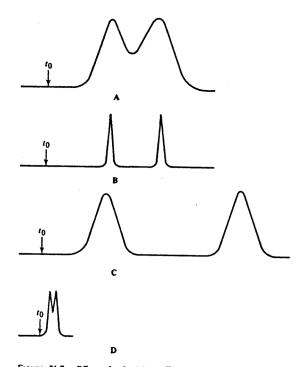
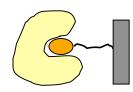



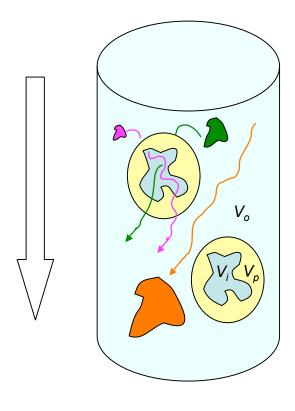
FIGURE 21.2. Chromatogram of the three-component mixture of Figure 21.1. $t_0 = time$ for solvent to traverse the column, $t_{r_B} = retention$ time of substance B, $t_{w_B} = peak$ basewidth of substance B, h = peak height. Units can also be given in terms of volume rather than time: V_0 , V_{r_B} , V_{w_B} , and so forth.

CHROMATOGRAPHIC SEPARATION: RESOLUTION

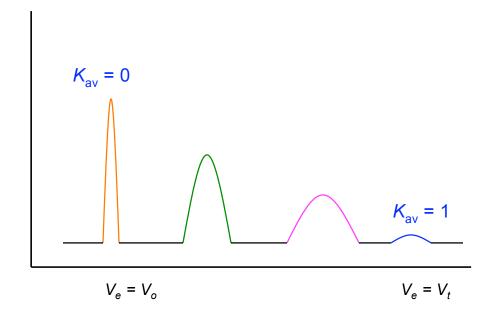




FIGURE 21.7. Effect of selectivity, efficiency, and capacity factor on resolution. A: Poor resolution. B: Good resolution due to column efficiency. C: Good resolution due to column selectivity. D: Poor resolution due to low capacity factor despite adequate column efficiency and selectivity. Courtesy of Varian Associates.

CHROMATOGRAPHIC PROTEIN PURIFICATION


Protein Property	Chromatography		
Size	Gel filtration (GFC)		
	Gel permeation (GPC)		
	Size exclusion (SEC)		
Charge	Ion exchange (IEC)		
Hydrophobicity	Hydrophobic interaction (HIC)		
	[Reverse phase (RPC)]		
Specific binding	Affinity (AC)		

GEL FILTRATION CHROMATOGRAPHY: PRINCIPLES



$$V_{\text{total}} = V_{\text{o}} (= 0.35 \text{ x } V_{\text{t}}) + V_{\text{p}} + V_{\text{i}}$$

$$K_{av} = \frac{V_{e} - V_{0}}{V_{i} + V_{p}} = \frac{V_{e} - V_{0}}{V_{t} - V_{0}}$$

$$0 \le K_{av} \le 1$$

$$K_{av} = -a \times log MW + b$$

GEL FILTRATION CHROMATOGRAPHY: SIZE SEPARATION

Table 5. Properties of Sephadex.

Gel type	Dry bead size μm	Fractionation range Globular proteins	Fractionation range Dextrans	Swelling factor ml/g
Sephadex G-10	40 120	- 700	- 700	2- 3
Sephadex G-15	40 – 120	- 1500	- 1500	2.5 - 3.5
Sephadex G-25 Coarse	100 - 300	1000 - 5000	100 5 000	4-6
Sephadex G-25 Medium	50 – 150	1000 - 5000	100 - 5 000	4-6
Sephadex G-25 Fine	20 - 80	1000 - 5000	100 - 5 000	4-6
Sephadex G-25 Superfine	10 - 40	1000 - 5000	100 - 5 000	4-6
Sephadex G-50 Coarse	100 - 300	1 500 - 30 000	500 - 10 000	9-11
Sephadex G-50 Medium	<i>5</i> 0 – 150	1 500 - 30 000	500 - 10 000	9-11
Sephadex G-50 Fine	20 - 80	1 500 - 30 000	500 - 10 000	9 – 11
Sephadex G-50 Superfine	10 - 40	1 500 - 30 000	500 - 10 000	9-11
Sephadex G-75	40 – 120	3 000 - 80 000	1 000 - 50 000	12 - 15
Sephadex G-75 Superfine	10 - 40	3 000 - 70 000	1 000 - 50 000	12 - 15
Sephadex G-100	40 – 120	4 000 - 150 000	1 000 - 100 000	15 - 20
Sephadex G-100 Superfin	e 10 – 40	4 000 - 100 000	1000 - 100000	15 20
Sephadex G-150	40 – 120	5 000 - 300 000	1 000 - 150 000	20 - 30
Sephadex G-150 Superfin	e 10-40	5 000 - 150 000	1 000 - 150 000	18 - 22
Sephadex G-200	40 - 120	5 000 - 600 000	1 000 - 200 000	30 - 40
Sephadex G-200 Superfin	e 10 – 40	5 000 - 250 000	1 000 - 150 000	20 – 25

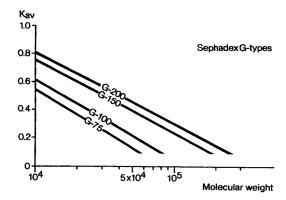
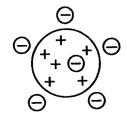
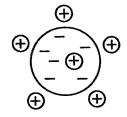
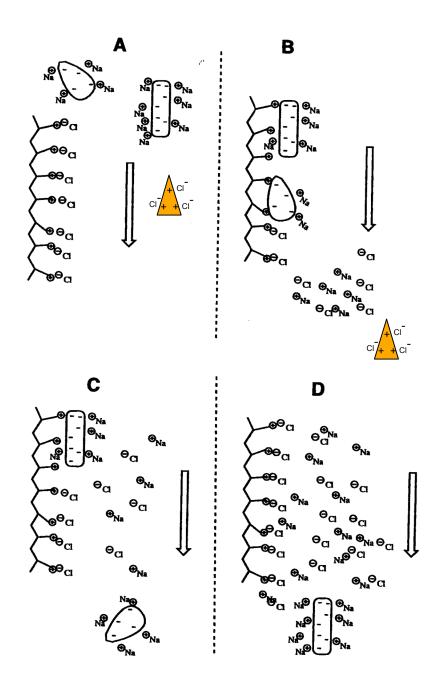




Fig. 24. Selectivity curves of Sephadex G-types, globular proteins.

ION EXCHANGE CHROMATOGRAPHY: RESINS


ANION exchanger with exchangeable counter-ions

CATION exchanger with exchangeable counter-ions

ion Exchange Groups	TABLE 4-2. Used in the Purification of Protei	n u s
FORMULA	NAME	ABBREVIATION
Strong anion		
-CH ₂ N ⁺ (CH ₃) ₃	trimethylaminoethyl	TAM
$-C_2H_4N^+(C_2H_5)_3$	triethylaminoethyl	TEAE
$-C_2H_4N^+(C_2H_5)_2CH_2$ -CH(OH)CH ₃	diethyl-2-hydroxypropylamino-ethyl	QAE
Weak anion		
$-C_2H_4N^+H_3$	aminoethyl	AE
$-C_2H_4N^+H(C_2H_5)_2$	diethylaminoethyl	DEAE
Strong cation		
SO ₃ -	sulpho	S
-CH ₂ SO ₃ -	sulphomethyl	SM
-C ₃ H ₆ SO ₃ -	sulphopropyl	SP
Weak cation		
-C00-	carboxy	C
-CH ₂ COO-	carboxymethyl	СМ

ION EXCHANGE CHROMATOGRAPHY: PRINCIPLES

PROTEIN PURITY DETERMINATION BY SDS-PAGE

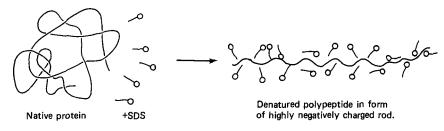


Figure 10.3. The action of dodecyl sulfate in denaturing proteins.

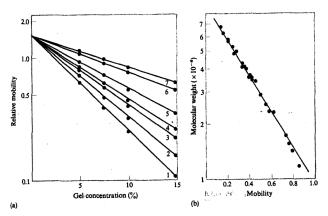
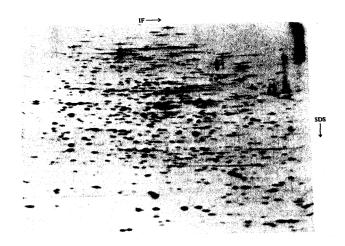
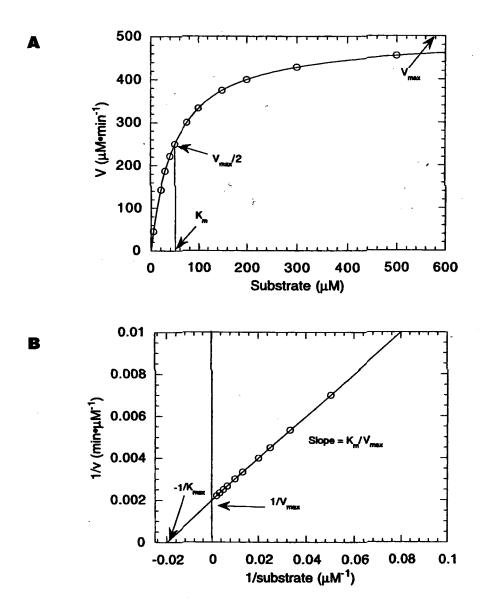



Figure 12-18.

SDS polyacrylamide-gel electrophoresis of proteins. (a) Relative mobility of seven proteins as a function of the concentration of the acrylamide gel. The molecular weights of the proteins range from 14,000 d for the coat protein of phage R17 (curve 7) to 60,000 d for catalase (curve 1). (b) Relative mobility of various proteins in 10% acrylamide gels as a function of molecular weight. [After K. Weber and M. Osborn, in The Proteins, 3d ed., vol. 1 (New York: Academic Press, 1975), p. 179.]



PROTEIN CONCENTRATION DETERMINATION BY BCA ANALYSIS

Putative cupric complex with peptide bond.

bicinchoninic acid

ENZYME ACTIVITY ASSAY

FIGURE 8-1 (A) Michaelis-Menten plot and (B) Lineweaver-Burk plot. $K_{\rm m}=50~\mu{\rm M},~V_{\rm max}=500~\mu{\rm M/min}.$

PROTEIN PURIFICATION TABLE

Step	Protein (mg)	Total activity (milliunits)	Specific activity (milliunits/mg)	Yield (%)	Purification (fold)
Crude extract	1070	890	0.8	-	-
$(NH_4)_2SO_4$ precipitation	400	580	1.5	65	1.9
Gel Filtration Chromatography (Sephadex G50)	38	278	7.3	31	9.0
Ion Exchange Chromatography (Q-Sepharose)	2	96	58.0	11	73.0

One unit (U) of enzyme activity is the amount of enzyme that hydrolyzes 1 $\mu mole$ of substrate per minute at $37^{\circ} C$