CHEM 524 -- Course Outline (Part 11)—2005 minor modification

 

VII.      Error and Statistical Sampling:  Chapter 6 and Appendix A (Read both, esp. Append. A)

F.         Statistical Sampling only applies to random error, Statistics yield evaluation of error

1. Systematic error more difficult-

a.  Calibration—pure analyte, concentrations must bracket unknown, must be appropriate to analyte

b.  Matrix, - Blank must be all but unknown, concentration not interacting, no interfering species

c.  Sampling errors- e.g. uncalibrated pipette or aliquots with sequence effect

            2. Sampling uses previous definitions, average and deviation:

a. Averaging data from multiple measurements:

E = S Ei/n  as nŕ very large, then E ŕ m

b. Standard deviation (rms excursion from mean):

s = [S (Ei-E)2/(n-1)]1/2   nŕ very large, then sŕ s

            3.         Random distribution of error is Gaussian -- z test, large set

                        ---                 where:  m = true mean; s = true S.D.

                        --- a-probability in interval:     

                                                expressed as P(z < za) = 1 - a, P(|z| < za) = 1 - 2a

                        --- values from table of z and a (Table A1)

 

            4. Smaller samples:  Student t-test         (s is unknown) -- measure first (n < 30)

                        -- for a small number of data, the error (uncertainly) increases

                        --- s and s differ -- need table for a depend on n

                        --- t = (E - m)/(s/ n1/2), where E - average of n samples table gives t (a, n)

                                    same form     P(t < tna) = 1 - a,                       P(t > tna) = a,

                                     also P(|t |< tna) = 1 - 2a, and P(0 < t < tna) = 0.5 - a,

 

            5. Hypothesis testing -- is difference between E and m significant?

                        --- test confidence interval    m = E ± zs/ n1/2 (or m = E ± ts/ n1/2)

                                    two-tailed, 1-2a level confidence

                        -- confidence (or probability) that an interval (error range) encloses the true mean

                        -- as confidence increases, interval must increase, as n increases, interval decrease

                        -- example problem

 

G.        Concentration Sensitivity

            1.         Calibration curve gives  E = f(c),  (book uses S) calibration sensitivity: m = dE/dc = df(c)/dc

                        -- Concentration Confidence interval:    mc = c ± tsc/ n1/2    sc = s/m

                        -- Actual confidence (error) also affected by calibration error

                                    use t = (c-mc)/(sc/n1/2)

                        -- Analytical sensitivity: g = m/s = 1/sc corrects for gain, etc.

                                    note smaller error more sensitivity

 

            2.         Detection Limit—smallest signal/conc. at some level of confidence

                        -- DL = k.sbk / m         sbk --    S.D. of blank, k -- confidence factor,

-- limited sampling use t-test:  t = k / 21/2   2 from sample + blank measurement

                                                (goal make measurements at >10*DL)