CHEM 524 -- Outline (Part 5) - 2011 update

For html Version of This Set of Notes with Linked Figures from 2005 <u>CLICK HERE</u> <u>Text: Chapter 3, Sect 2-3</u> directly relates to this lecture, added material needed

III. C. Special Topics in optics

Linear Polarizers -- random polarization in - linear out (i.e. E field with specific orientation)

 Absorptive (or reflective -- for metal): Aligned dipole transitions select polarization
 vis & uv, absorbing (Polaroid, stretched film impregnated with dye, can be big, orient by binding to oriented polymer)—"glare" is polarized, sheets of Polaroid make sunglasses

-- IR: reflection: wire (grid) --made like a grating (narrow spacing $\lambda > 2d$), use hologram, expose photo resist, evaporate metal across ridges, minimize d for near IR

Wire array by first photoetch a coating with hologram, highest groove density for best near IR.

Al is vapor deposited on ridges by tilting substrate to flow direction,

Cambridge Physical Science (sold under various names) - Now Thorlabs.com lists them

Wire Grid Polarizer Specifications

Material	CaF ₂		BaF ₂		ZnSe		KRS-5			
Wavelength	3 µm	8 µm	3 µm	10 µm	3 µm	10 µm	3 µm	15 µm		
Typical Extinction Ratio	150:1	300:1	150:1	300:1	150:1	300:1	150:1	300:1		
Wire Grid Spacing (Nominal)	2700 Grooves/mm									
Parallelism	\leq 3 arcmin									
Surface Flatness	$\lambda/20$ @ 10.6 µm for Ø25 mm Polarizers $\lambda/10$ @ 10.6 µm for Ø50 mm Polarizers									
Substrate Thickness	2 ± 0.5 mm for Ø25 mm Polarizers 5 ± 0.5 mm for Ø50 mm Polarizers									
Ring Thickness	$5.0 \text{ mm} \pm 0.2 \text{ mm}$									
Ring Diameter Tolerance	+0.0/-0.2 mm									

Performance Spec	ifications	12 -	6		,-	
MODEL NUMBER	IGP228 B4F2 10	1227 (4.F2	 IGP226	IGP225	י IGP224	IGP223
Spectral Range	1-12 µm	9 june Part	8-14µm	2-35µm	50-1000 µm	20-1000 µm
Substrate Material	Barlum Fluoride	ilcium. Ioride	AR coated Ge	7. S KRS-5	Polyester	Polyethylene
Substrate Thickness	2 mm 2	mm	2 mm	2.mm	2.5 µm	0.5mm
Aperture	25 mm dia. 25 r	nm dla	25 mm dia.	25 mm dia.	37 mm dia.	25 mm dia.
Transmission $(k_t)^*$ Efficiency	85%	35%	90% (10,4m)	70% (10 µm) 50% (3 µm)	90%	80%
Grid Spacings (period)	0.25 μπ 0,25 μτ	n (approx)	0.4µm (approx)	0.4 µm (approx)	10 µ m	4µm
Extinction Ratio*	42 (3.9 مسر)	3-9μm);- 5μm)>1	≥ 190 (10 µm)	$2.39(3\mu m)$ > 140:(10 μm)	>15	>12 (20 μm) >20 (30 μm)
Degree of Polarization*	98% (3.9 μm) 93% 93% (1.5 μm) 98%	(15µm) 3-9µm)	≥99% (10 µm)]	>99% (10µm) >88% (3µm)	>93%	>92%(20 μm) >95%(30 μm)
Holder Diameter	1.625in(4.13cm) 1.625i	n(4.13cm)	1.625in(4.13cm)	1.625in(4.13cm)	2.125in(54cm)	1625in(4.13cm)
Holder Thickness	0.25in(0.635cm)	0.635cm)	25in(0.635cm)	25in(0.635cm)	.25in(0.635cm)	.25in(0.635cm)

Substrates affect transmission, CaF₂ or BaF₂ for near IR, Ge mid IR,

wire density controls polarization ratio

b. Reflecting (due to index change)

1. Brewster angle (stack of plates), each one loses some intensity from (horizontal, \perp) polarization and transmits all of the other (vertical, | |) polarization at Brewster angle

- 2. Prism uses birefringence properties--different index two polarizations -
 - o result: total internal reflection of one polarization, other transmit (Glan Prism)
 - one polarization is transmitted with some reflection loss, the other totally reflected (but angle sensitive, narrow angle of acceptance),

100

a. <u>Glan Taylor</u> has <u>air gap</u>, narrow angle of acceptance, capable of high power Typically calcite (CaCO₃) big difference in n_x, n_y, but far-uv and IR absorbance

Fig. 1 Oriel Glan-Taylor Polarizer with exit window.

Fig. 2 Transmittance (k₁) of Oriel Standard Glan-Taylor Polarizers for polarized light.

b.<u>Glan Thompson</u> has glue in gap, much larger acceptance angle, lower power, longer λ

c. -- Beam splitting prism (Rochon, Wollaston etc.), transmit both,

but divergent angle between polarizations,

if beam is collimated, can separate at a distance,

MgF₂ used in vac-uv as Rochon, LiIO₄ (goes into IR) sometimes as a Wollaston

. 1 Oriel Wollaston Cube Polarizer.

Fig. 2 Beam Deviation and Field Angle vs. Wavelength of Oriel Wollaston Polarizers.

2. Circular polarization

a. Wave plate, slides as example of retardation, use difference in n_x , n_y to retard E_x , E_y

-- <u>birefringence retardation</u>, δ , depends on wavelength, λ , the difference in refractive index, $\Delta n = n_x - n_y$ and thickness, z, cause a phase shift of E_x, E_y – need both, <u>input lin. pol.at 45</u>° $\delta = (2\pi/\lambda) \Delta n z$

-- as light passes through crystal, shift phase of two orthogonally polarized beams (x,y), when recombine, if $\lambda/4$ shift ($\delta = \pi/2$) then circular (left or right), if $\delta = \pi$ (or $\lambda/2$) then perpendicular linear polarization results–other values give elliptically polarized light

--single plate can be $\lambda/4$ (circ) or $\lambda/2$ (lin), or multi: $(4n+1)\lambda/4$ - work in narrower λ region --variable – can change index difference by applying stress, static or dynamic,

stress direction gives retardation add left or right circularity, oscillate-modulator (PEM)

-- <u>Soliel-Babinet compensator</u> - vary z by sliding a wedge into the beam to vary δ

b. Fresnel rhomb -- reflection retardation -- broad band circular polarization

3. Modulation – means of improving S/N is signal level low

a. <u>Characteristics (Figure 1)</u>: depth, duty cycle, shape, frequency

This is a square wave modulation with a 50% duty cycle and fairy deep modulation (i.e. b>>a)
Could be sine wave, triangular, spikes (flash), whatever wanted or device can provide
Period: τ =1/f, is the repeat time (inverse frequency) assumed regular (or make noise)
Regularity affects duty cycle: t_{on}/(t_{on}+t_{off}), on and off same—50%, more off than on <50%, etc.
Depth: (b+a)/b – affected by "leakage or mechanism for making signal on/off

b. Styles: Chopper mechanical intensity modulation (make dual beam spectrometer)

rectangular holes in wheel — ~square, depend on beam and hole size — circles get ~sin wave also can make with tuning fork-triangle or trapezoid, shutter, anything interrupt a beam alternatively use: polarization, frequency modulation (grating dither)--often sinusoidal transient grating (nonlinear effect, crossed laser beams), Interference, acousto-optic

c. Circular/Linear polarization Modulator:

-- <u>Electro-optic</u> — induce birefringence with voltage polarization

(e.g. KDP typical, <u>Pockels Cell</u>) - use as a <u>Q-switch in laser</u> common can switch between linear polarizations ($\lambda/2$ retard) or from linear to circular ($\lambda/4$ retard)

Figure 2. 180° phase shift and 90° rotation of plane of polarization induced by voltage applied to Pockels cell crystal.

Photoelastic — periodic stress induce birefringence

Polarization Modulation with PEM for CD

Linear Dichroism Schematic (courtesy Hinds Instr.)

any isotropic material acoustically matched to driver can be basis, wide spectra region possible, results in <u>periodic retardation</u>, sine wave in nature: variable amplitude (see above) linked <u>slides provide example of CD and LD with polarization modulation</u>

retard wavelength of $\lambda/4$ (right to left circular) or $\lambda/2$ (parallel to perpendicular linear)

d. Faraday rotator — magnetic field <u>rotate linear (not circ.)</u> polarization to new orientation – analogous to optical rotation by chiral solutions, but tunable angle with **B** field

e. Acousto-optic - <u>acoustic wave</u> sets up <u>diffraction for specific wavelength</u>, key -- use deflected beam, maximum modulaton depth

can mode-lock or Q-switch laser, even has been used as basis for a spectrometer

Homework—read in Chap. 3, parts. 1-5 (overlaps Section 4, Optics) and review the modulator tutorials below,

For discussion or thinking: 1. why are wire grids not useful in vis/uv?

2. why are polaroids not useful in farUV or mid IR?

3. what advantage might a 80% duty cycle modulator have? a 20%?

4. if you can modulate with a simple chopper (cheap, low tech) why go to polarization modulation or shutters or ATOF?

5. what is the difference between a magnetic (Faraday) rotator and a electro-optic modulator (Pockels cell) beyond one uses magnetic and the other electric fields?

Problems to hand in: # 3-14, 27 added to assigned work from section 4 (for Problem set #2)

Plus: a. for a wire grid polarizer, if the spacing between wires is 1.0 m, estimate the minimum wavelength for which you can usefully obtain polarized IR light (e.g. 5:1 ratio)

b. For a calcite prism polarizer, if the cut is at 45°, at what angles of incidence would it be useful as a polarizer (angular aperture is goal)

Links:

Polarizers:

Karl Lambrecht Corp., (local Chicago connection) calcite and other crystal polarizers, retraders etc. (has a neat little diagram)

http://www.klccgo.com/

Polarizer applet, Michigan State

http://lectureonline.cl.msu.edu/~mmp/kap24/polarizers/Polarizer.htm

API Amaerican Polarizers, plastic sheet

http://www.apioptics.com/

Optics for Reserch, crystal polarizers

http://www.ofr.com/oc-22 uv polarizer.htm

Opto Sigma Corp, wide variety of crystal polarizers and plates

http://www.optosigma.com/miva/merchant.mv?Screen=CTGY&Store_Code=OS&Category_Code=Polarizers

Meadowlark, dichroic polarizers and liquid crystal retarders and modulators

http://www.meadowlark.com/

Thorlabs polarizers, includes prism and wire grid plus others

http://www.thorlabs.com/Navigation.cfm?Guide_ID=24

Edmond Optics, polarizer section, prisms, grids, waveplates etc.

http://www.edmundoptics.com/onlinecatalog/browse.cfm?categoryid=166

Optometrics – ruled grid polarizers, higher power – lower wire density http://www.optometrics.com/wire_grid_polarizer.html

Modulators:

Explanation of acousto-optic modulation http://electron9.phys.utk.edu/optics507/modules/m7/acousto.htm Tutorial from Drexel on E-O and A-O modulators http://repairfag.ece.drexel.edu/sam/CORD/leot/course04 mod07/mod04-07.html Brimrose tech sheet with AOTF, acousto-optic tunable filter description http://www.brimrose.com/Aointro.pdf Stanford Research Systems (chopper) http://www.thinksrs.com/products/SR540.htm Electro-optical Products Corp, choppers, acousto- and electro-optic modulators http://www.eopc.com/index.html Electro-optical components (multi company representative) Modulators: http://www.eoc-inc.com/electro optic modulators.htm Polarizers: http://www.eoc-inc.com/polarizers optical components.htm Lasermetrics, FAST Pulse, electro-optic modulators http://www.lasermetrics.com/ (site connects to a descriptive manual of uses http://www.lasermetrics.com/technotes.html) Hinds photo elastic polarization modulators http://www.hindsinstruments.com/PEM Components/default.aspx