CHEM 524 -- Course Outline (Part 11) Error- 2013

For html of 2005 notes with linked figures, click here

VII. Error and Statistical Sampling: Chap. 6 and Append. A (Read both, esp. Append. A)
F. Statistical Sampling only applies to random error, Statistics yield evaluation of error

1. Systematic error more difficult-
a. Calibration-pure analyte, concentrations must bracket unknown, be appropriate to analyte
b. Matrix - Blank \rightarrow all except unknown, concentration not interacting, no interfering species
c. Sampling errors- e.g. uncalibrated pipette or aliquots with sequence effect
2. Data Sampling uses previous definitions, average and deviation:
a. Averaging data from multiple measurements, μ is true average:

$$
\tilde{E}=\Sigma E_{i} / n \quad \text { as } n \rightarrow \text { very large, then } \tilde{E} \rightarrow \mu
$$

b. Standard deviation (rms excursion from mean) $\sigma=$ true S.D., but s is measured SD

$$
s=\left[\Sigma\left(E_{i}-\tilde{E}\right)^{2} /(n-1)\right]^{1 / 2} \quad n \rightarrow \text { very large, then } s \rightarrow \sigma
$$

3. Random distribution of error is Gaussian -- z test, large set $\rightarrow P(z)$ is distribution of values $\mathbf{P}(\mathbf{z})=(\sigma \sqrt{ } 2 \pi)^{-1} \exp \left(-z^{2} / 2\right) \quad \mathbf{z}=(\mathbf{E}-\mu) / \sigma \quad \rightarrow$ where: $\mu=$ true mean; $\sigma=$ true S.D.

$\rightarrow \alpha-$ probability of being beyond a z value: $\alpha=\mathrm{P}\left(\mathrm{z} \geq \mathrm{z}_{\alpha}\right)=\int_{\mathrm{z} \mathrm{\alpha}}{ }^{\infty} \mathrm{P}(\mathrm{z})$
alternate, within interval expressed as $\mathbf{P}\left(\mathbf{z}<\mathrm{z}_{\alpha}\right)=\mathbf{1 - \alpha ,} \quad \mathbf{P}\left(|\mathrm{z}|<\mathrm{z}_{\alpha}\right)=\mathbf{1}-\mathbf{2 \alpha}$ (2 sided)

TABLE A- 1
Probability table for the normal distribution

2	α	2	α	z	1	z	α	z	\nsim								
0.00	. 5000	0.35	. 3632	0.70	. 2420	1.05	. 1469	1.40	. 0808	1.75	. 0401	2.10	. 0179	2.45	. 0071	2.80	. 0026
0.01	. 4960	0.36	. 3594	0.71	. 2389	1.06	. 1446	1.41	. 0793	1.76	. 0392	2.11	. 0174	2.46	. 0069	2.81	. 0025
0.02	. 4920	0.37	. 3557	0.72	. 2358	1.07	: 1423	1.42	. 0778	1.77	. 0384	2.12	. 0170	2.47	. 0068	2.82	. 0024
0.03	. 4880	0.38	. 3520	0.73	. 2327	1.08	. 1401	1.43	. 0764	1.78	. 0375	2.13	. 0166	2.48	. 0066	2.83	. 00223
0.04	. 4840	0.39	. 3483	0.74	. 2296	1.09	. 1379	1.44	. 0749	1.79	. 0367	2.14	. 0162	2.49	.00664	2.84	. 0023
0.05	. 4801	0.40	. 3446	0.75	. 2266	1.10	. 1357	1.45	. 0735	1.80	. 0359	2.15	. 0158	2.50	.0062	2.85	.0022
0.06	. 4761	0.41	. 3409	0.76	. 2236	1.11	. 1335	1.46	. 0721	1.81	. 0351	2.16	. 0154	2.51	.0060	2.86	0021
0.07	. 4721	0.42	. 3372	0.77	. 2206	1.12	. 1314	1.47	. 0708	1.82	. 0344	2.17	. 0150	2.52	. 0059	2.87	. 0021
0.08	. 4681	0.43	. 3336	0.78	. 2177	1.13	. 1292	1.48	. 0694	1.83	. 0336	2.18	. 0146	2.53	. 0057	2.88	. 0020
0.09	. 4641	0.44	. 3300	0.79	. 2148	1.14	.1271	1.49	. 0681	1.84	. 0329	2.19	. 0143	2.54	. 0055	2.89	. 0019
0.10	. 4602	0.45	. 3264	0.80	. 2119	1.15	. 1251	1.50	. 0668	1.85	. 0322	2.20	. 0139	2.55	. 0054	2.90	. 0019
0.11	. 4562	0.46	. 3228	0.81	. 2090	1.16	. 1230	1.51	. 0655	1.86	. 0314	2.21	. 0136	2.56	. 0052	2.91	. 0018
0.12	. 4522	0.47	. 3192	0.82	. 2061	1.17	. 1210	1.52	. 0643	1.87	. 0307	2.22	. 0132	2.57	. 0051	2.92	. 0018
0.13	. 4483	0.48	. 3156	0.83	. 2033	1.18	.1190	1.53	. 0630	1.88	. 0301	2.23	. 0129	2.58	. 0049	2.93	. 0017
0.14	. 4443	0.49	. 3121	0.84	. 2005	1.19	1170	1.54	. 0618	1.89	. 0294	2.24	. 0125	2.59	. 0048	2.94	. 0016
0.15	. 4404	0.50	. 3085	0.85	. 1977	1.20	1151	1.55	. 0606	1.90	. 0287	2.25	. 0122	2.60	0047	2.95	. 0016
0.16	. 4364	0.51	. 3050	0.86	. 1949	1.21	.1131	1.56	. 0594	1.91	. 0281	2.26	. 0119	2.61	. 0045	2.96	. 0015
0.17	.4,325	0.52	. 3015	0.87	. 1922	1.22	. 1112	1.57	. 0582	1.92	. 0274	2.27	.0116	2.62	. 0044	2.97	. 0015
0.18	. 4286	0.53	. 2981	0.88	.1894	1.23	. 1093	1.58	. 0571	1.93	0268	2.28	0113	2.63	. 0043	2.98	0014
0.19	. 4247	0.54	. 2946	0.89	. 1867	1.24	1075	1.59	. 0559	1.94	. 0262	2.29	. 0110	2.64	. 0041	2.99	. 0014
0.20	. 4207	0.55	. 2912	0.90	. 1841	1.25	. 1056	1.60	. 0548	1.95	. 0256	2.30	. 0107	2.65	. 0040	3.00	. 0013
0.21	. 4168	0.56	. 2877	0.91	. 1814	1.26	. 1038	1.61	. 0537	1.96	. 0250	2.31	. 0104	2.66	. 0039	3.01	. 0013
0.22	4129	0.57	. 2843	0.92	. 1788	1.27	. 1020	1.62	. 0526	1.97	. 0244	2.32	. 0102	2.67	. 0038	3.02	. 0013
0.23	.4090	0.58	. 2810	0.93	. 1762	1.28	. 1003	1.63	. 0516	1.98	. 0239	2.33	. 0099	2.68	. 0037	3.03	0012
0.24	. 4052	0.59	. 2776	0.94	. 1736	1.29	. 0985	1.64	. 0505	1.99	. 0233	2.34	. 0096	2.69	. 0036	3.04	. 0012
0.25	. 4013	0.60	. 2743	0.95	. 1711	1.30	.0963	1.65	. 0495	2.00	. 0228	2.35	009	2.70	. 0035	3.05	. 0011
0.26	. 3974	0.61	. 2709	0.96	. 1685	1.31	.0951	1.66	. 0485	2.01	. 0222	2.36	. 0091	2.71	0034	3.06	0011
0.27	. 3936	0.62	. 2676	0.97	. 1660	1.32	. 0934	1.67	. 0475	2.02	. 0217	2.37	. 0089	2.72	.0033	3.07	0011
0.28	. 3897	0.63	. 2643	0.98	. 1635	1.33	. 0918	1.68	. 0465	2.03	. 0212	2.38	0087	2.73	0032	3.08	0010
0.29	. 3859	0.64	. 2611	0.99	. 1611	1.34	. 0901	1.69	. 0455	2.04	. 0207	2.39	. 0084	2.74	. 0031	3.09	. 0010
0.30	. 3821	0.65	. 2578	1.00	. 1587	1.35	. 0885	1.70	. 04446	2.05	. 0202	2.40	. 0082	2.75	0030	3.10	0010
0.31	. 3783	0.66	. 2546	1.01	. 1562	1.36	. 0869	1.71	. 0436	2.06	. 0197	2.41	. 0080	2.76	. 0029	3.11	0009
0.32	. 3745	0.67	. 2514	1.02	. 1539	1.37	. 0853	1.72	. 0427	2.07	. 0192	2.42	. 0078	2.77	. 0028	3.12	. 0009
0.33	. 3707	0.68	. 2483	1.03	. 1515	1.38	. 0838	1.73	. 0418	2.08	. 0188	2.43	. 0075	2.78	. 0027	3.13	. 0009
0.34	. 3669	0.69	. 2451	1.04	.1492	1.39	. 0823	1.74	. 0409	2.09	. 0183	2.44	. 0073	2.79	. 0026	3.14	0008

4. Smaller sample sets (less statistical): Student t -test (σ is unknown)
-- measure first ($\mathrm{n}<30$) - determine \tilde{E} and s , values for small sets (defined above)
-- for a small number of data, the error (uncertainty) increases
--- s and σ differ -- need table for α depend on n
--- $t=(\tilde{E}-\mu) /\left(s / n^{1 / 2}\right)$, where $\tilde{E}-$ average of n samples table gives $t(\alpha, n)$,
one use, pick column for desired α and compute the t for that interval of confidence recall, you are measuring \tilde{E} and s but do not know μ, i.e. if you found right value same form -E within the interval around $\mu: \mathbf{P}\left(\mathbf{t}<\mathbf{t}^{\mathrm{n}}{ }_{\alpha}\right)=\mathbf{1}-\alpha$, outside: $\mathbf{P}\left(\mathbf{t}>\mathbf{t}^{\mathrm{n}}{ }_{\alpha}\right)=\alpha$, also $\mathrm{P}\left(|\mathrm{t}|<\mathrm{t}^{\mathrm{n}}{ }_{\alpha}\right)=1-2 \alpha$, and $\mathrm{P}\left(0<\mathrm{t}<\mathrm{t}^{\mathrm{n}}{ }_{\alpha}\right)=0.5-\alpha$,

Calculate t and find t_{α} closest but smaller, less than a probability α that a value differs from true mean $O R$ that with confidence 1- α that some difference due to systematic error Key is null hypothesis - assuming due to random and test that partially systematic

TABLE A-2

Critical values of t

5. Hypothesis testing -- is difference between $\tilde{\mathrm{E}}$ and μ significant?
--- test confidence interval $\mu=\tilde{E} \pm \mathrm{z} \sigma / \mathbf{n}^{1 / 2}\left(\right.$ or $\left.\mu=\tilde{\mathrm{E}} \pm \mathrm{ts} / \mathbf{n}^{1 / 2}\right)$
two-tailed, 1-2 α level confidence
T-test-confidence interval

note patter: move confidence \rightarrow bigger interval (lesacentain)
more data \rightarrow smaller interval
-- confidence (or probability) that an interval (error range) encloses the true mean
-- as confidence increases, interval must increase, as n increases, interval decrease
-- example problem

$$
\begin{aligned}
& \begin{array}{c}
\text { Suppose yow lathe } 10 \text { measemanete of a sirguel } \\
q \mathrm{~V} \text { y }=10
\end{array} \\
& \begin{array}{rlrl}
8 \mathrm{~V} & \mathrm{~V} & =1.32 \\
10 \mathrm{~V} & \vec{E} & =8.8
\end{array} \\
& 11 \mathrm{~V} \\
& 11 \mathrm{~V} \text { What is the confilance lance that } E \\
& 9 \text { d differs fro the expected true mean } \\
& 7 \mathrm{~V} \quad \mu=10 \text { ely ont noxdow envoy? } \\
& { }_{9} v \quad t=\frac{E-\mu}{5 / \sqrt{n}}=\frac{8.8-10}{\left(1.32 /\left(100^{2}\right)\right.}=2.87 \\
& 9 \mathrm{~V} \quad \tau_{0.01}=2.82 \quad t_{0.001}=3.25 \\
& -299 \% \text { chance } E<\mu \text { is systematic } \\
& \text { NH hove } E<\mu \text { is randolph } \\
& \text { Suppose vow tow that } \mu=10 \mathrm{~V} \text { and } \sigma=1 \\
& \text { at fou the measencment you ans satires. } \\
& \text { If a } 5 \text { iv measurenu } 4 \text { lives avalex. } \\
& \text { of } E=12 \mathrm{~V} \text {, what is the prolicalility } \\
& \text { that a syptexeatio erionuwas hade? } \\
& z=\frac{1 \lambda-10}{1}=\frac{E-\mu}{\sigma}=2 \\
& \text { at } 95 \% \text { conptrbere } \\
& a+98 \% \\
& z=2 \Rightarrow \quad \because \quad \alpha=0.0228
\end{aligned}
$$

G. Concentration Sensitivity

1. Calibration curve gives $\mathbf{E}=\mathbf{f}(\mathbf{c})$, (book uses \mathbf{S}) calibration sensitivity: $\mathbf{m}=\delta \mathbf{E} / \delta \mathbf{c}=\delta \mathbf{f}(\mathbf{c}) / \mathbf{d c}$
-- Concentration Confidence interval: $\quad \mu_{\mathrm{c}}=\underline{\mathrm{c}} \pm \mathrm{ts}_{\mathrm{c}} / \mathbf{n}^{1 / 2} \quad \mathrm{~s}_{\mathrm{c}}=\mathrm{s} / \mathrm{m}$
-- Actual confidence (error) also affected by calibration error

$$
\text { use } \mathbf{t}=\left(\underline{\mathbf{c}}-\mu_{\mathrm{c}}\right) /\left(\mathbf{s}_{\mathrm{c}} / \mathbf{n}^{1 / 2}\right)
$$

Calibration error convolution

-- Analytical sensitivity: $\gamma=\mathrm{m} / \mathrm{s}=\mathbf{1} / \mathrm{s}_{\mathrm{c}}$ corrects for gain, etc.
note smaller error more sensitivity
2. Detection Limit -smallest signal/conc. at some level of confidence
$-\mathrm{DL}=\mathrm{k} \cdot \mathrm{s}_{\mathrm{bk}} / \mathrm{m} \quad \mathrm{s}_{\mathrm{bk}}--\quad$ S.D. of blank, $\underline{\mathrm{k}-- \text { confidence }}$ factor, $\mathrm{m}-$ calibration sensitivity
Detection limit
$D L=k s_{b k} / m$
k - confidence factor
-- limited sampling use t-test: $\mathbf{t}=\mathrm{k} / 2^{1 / 2} 2$ from sample + blank measurement (goal make measurements at $>10 * \mathrm{DL}$)

Homework - Statistical sampling (read Chap 6 and Append. A)
Discussion: Chap 6: \#4, 5, 7, 8, 11, 12
To hand in: Problems Chap 6: \#3, 6

