Circular Dichroism

- Most protein secondary structure studies use CD
- Method is bandshape dependent. Need a different analysis
- Transitions fully overlap, peptide models are similar but not quantitative
- Length effects left out, also solvent shifts
- Comparison revert to libraries of proteins
- None are pure, all mixed

UV-vis Circular Dichroism Spectrometer

JASCO-quartz prisms disperse and linearly polarize light

Polypeptide Circular Dichroism ordered secondary structure types

poly-L-glu($\alpha,-$), poly-L-(lys-leu)($\beta,----)$, L-ala ${ }_{2}-$ gly $_{2}($ turn, $\cdots \cdots)$
Critical issue in CD structure studies is SHAPE of the $\Delta \varepsilon$ pattern

Protein Circular Dichroism

Myoglobin-high helix (-), Immunoglobin high sheet (Lysozyme, $\mathrm{a}+\mathrm{b}(-)$, Casein, "unordered" (-

UIC Basis set - 22 proteins ECD

3D surface obtained by fitting the set of ECD spectra with polynomial Correlation coefficients of the polynomial fit of the ECD spectral intensity as the function of α-helical FC .

2D CORRELATION SPECTRA - ECD

Synchronous correlation map of the protein ECD spectra with respect to α-helix FC perturbation. Positive contours : blue/cyan, negative contours: red/pink.

Simplest Analyses Single Frequency Response

Basis in analytical chemistry \rightarrow Beer's law response if isolated
Protein treated as a solution \rightarrow \% helix, etc. is the unknown
Standard in IR and Raman,
Method: deconvolve to get components
Problem - must assign component transitions, overlap
-secondary structure components disperse freq.
Alternate: uv CD - helix correlate to negative intensity at $222 \mathrm{~nm}, \mathrm{CD}$ spectra in far-UV dominated by helical contribution

Problem - limited to one factor,
-interference by chromophores]

Single frequency correlation of $\Delta \varepsilon$ with $F C$ helix

BETA-LACTOGLOBULIN

- M_{w} 18,400 Da, 162 residues
- Primarily β-sheet (42% sheet, 16% helix)
- High propensity for helical conformation
- Structural homolgy to retinol binding protein

Far-UVCD spectra of BLG titrated with SDS (0-50 mM)

Near-UVCD spectra of BLG titrated with SDS

PC/FA determined secondary structure change

Problem of Secondary Structure Definition

- where do segments begin and end
- what are turns, bends, etc.
- what is basis for helix or sheet ϕ, ψ or H-bond pattern?
- sources:

X-ray report - non-uniform (visual)
Levitt-Greer - C_{α} relationships dominate
Kabsch-Sander - H-bond patterns dominate
(DSSP)
Frishman-Argos - "knowledge-based" (STRIDE) King-Johnson - CD oriented

Problem of secondary structure definition No pure states for calibration purposes

Where do segments begin and end?

Comparison of secondary structure definitions:

Comparison with DSSP (Kabsh-Sander):

- King-Johnson
- Frishman-Argos (STRIDE)

Next step - project onto model spectra -Band shape analysis

Peptides as models

- fine for α-helix,
-problematic for β-sheet or turns - solubility and stability
-old method:Greenfield - Fasman --poly-L-lysine, vary pH

$$
\theta_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \phi_{\alpha}+\mathrm{b}_{\mathrm{i}} \phi_{\beta}+\mathrm{c}_{\mathrm{i}} \phi_{\mathrm{c}}
$$

--Modelled on multivariate analyses
Proteins as models - need to decompose spectra

- structures reflect environment of protein
- spectra reflect proteins used as models

Basis set (protein spectra) size and form - major issue

Freedom from model spectra

Series of methods developed assuming:

- spectral response was (fully) related to the secondary structure
- sampling structures with sufficient proteins creates a spectral basis

Milestones:

- Provencher - Glockner --(CONTIN) - ridge regression, no intermediate
- Hennessey - Johnson -- Single value decomposition (SVD) initial step is same as principle component or Factor analysis simplifies spectral variation - monitor component loadings 5 factors (independent component spectra)

Fractional structure from (total)inversion of SVD result

$$
\begin{gathered}
A=U S V^{\top} \\
F=X A \\
X=F\left(V S^{\prime} U^{\top}\right)
\end{gathered}
$$

Modifications: Project out model spectra (Compton -Johnson)
Variable selection - optimize basis (Manavalan-Johnson) permits analysis of why proteins are outliers.

Variations on a Theme

- Self-consistent methods - Sreerama - Woody - (SELCON) probably the most widely used now, Web site connect
- Restricted multiple regression (RMR) of Factor Analysis loadings Pancoska - Keiderling (et al.) applied to many spectral types
- Factor analysis is general - same as SVD
build correlation matrix of all experimental spectra, diagonalize to get eigenvalues, eigenvectors
yielding weights (singular values), loadings and components
Useful for analysis of spectral variation with structural variation
- Quantitative Secondary Structure application:

Spectral shape and intensity is influenced by many factors eg. solvent, pH, sequence, secondary structure, chromophore RMR idea is to find spectral components sensitive to structure

Factor Analysis Method

Decomposition of an experimental spectrum $\theta(\lambda)$ into linear combination of independent component spectra $\phi_{j}(\lambda)$:

$$
\theta_{i}(\lambda)=\sum_{j=1}^{p} C_{i j} \phi_{j}(\lambda)=A_{i} \sum_{j=1}^{p} c_{i j} \phi_{j}(\lambda)
$$

where

$$
\begin{array}{ll}
A_{i}=\sqrt{\int_{\lambda_{1}}^{\lambda_{2}} \theta_{i}^{2}(\lambda) d \lambda} & \text { "norm" } \\
C_{i j} / c_{i j} & \text { "loadings (expansion coefficients)" } \\
\phi_{j}(\lambda) & \text { "component spectra" }
\end{array}
$$

Factor Analysis Method

1. Construct Correlation Matrix [R]:

$$
\begin{array}{r}
{[R]=\left[w_{i}(\lambda)\right]^{T}\left[w_{i}(\lambda)\right], \text { where } \quad w_{i}(\lambda)=\frac{1}{A_{i}} \theta_{i}(\lambda)=\sum_{j=1}^{p} c_{i j} \phi_{j}(\lambda)} \\
\text { (normalized spectral data) }
\end{array}
$$

2. Diagonalize [R] to obtain Principal Components:

$$
[q]^{T}[R][q]=\left[\Lambda_{i j} \delta_{i j}\right]
$$

3. Calculate component spectra and corresponding loadings (coefficients):

$$
\left[\phi_{j}(\lambda)\right]=\left[w_{j}(\lambda)\right][q] \quad \text { and } \quad\left[c_{i j}\right]=[q]^{T}
$$

FA component spectra - 22 proteins ECD

Factor (Principle Component) Analysis

- Approach is functionally equivalent to Principle Component Analysis - Singular Value Decomposition
- No curve fitting is necessary
- Band assignments are not necessary
- Method is general - any technique
- Method:
- treat set of protein spectra as basis set of functions, [ϕ]
- Diagonalize the co-variance matrix to
- find most common elements- ψ_{1}
- find most common deviation $-\psi_{2}$
- continue
- Reconstruct Spectra: $[\phi]=[\psi][\alpha]$, where $[\alpha]$ is a matrix of coefficients, c_{ij} for $\mathrm{i}^{\text {th }}$ protein and j^{t} subspectrum
- Use vector of c_{ij} for protein i to characterize protein. Note ψ_{i} depends on training set, construct to be orthogonal

Ribonuclease A combined uv-CD and FTIR study

- 124 amino acid residues, 1 domain, MW= 13.7 KDa
- 3α-helices
- 6β-strands in an AP β-sheet
- 6 Tyr residues (no Trp), 4 Pro residues (2 cis, 2 trans)

RibonucleaseA

FTIR—amide I
Loss of β-sheet

Near -uv CD
Loss of tertiary
structure

Far-uv CD

Loss of α-helix

Spectral Change Temperature $\mathbf{1 0 - 7 0}^{\circ} \mathrm{C}$

Stelea, et al. Prot. Sci. 2001

Changing protein conformational order by organic solvent

THE and MeOH often used to induce helix formation
--sometimes thought to mimic membrane
--reported that the consequent unfolding can lead to aggregation and fibril formation in selected cases

Examples presented show solvent perturbation of dominantly β-sheet proteins

TFE and MeOH behave differently thermal stability key to differentiating states indicates residual partial order

β-lactoglobulin--pH and TFE , MeOH

Wavenumbers (cm^{-1})

170016801660164016201600 Wavenumbers $\left(\mathrm{cm}^{-1}\right)$

TFE and MeOH both induce helix at both pH 7 and 2

Factor analysis - 2nd component loading shows loss of sheet with time, double exp.

Xu\&Keiderling,
Adv.Prot.Chem. 2002

Concanavalin A pH, TFE and MeOH

MeOH normalizes β-sheet ECD, FTIR indicates aggregated TFE induces helix Xu\&Keiderling, Biochem, 2005

Lipid-induced Conformational Transition of β-Lactoglobulin: Equilibrium and Kinetic Studies

Globular protein with 9-stranded sheet (flattened β-barrel) and one helical segment Terminal segments have high helical propensity

Good model for β-to- α conversion

Binding to lipid vesicle acts as perturbation-cell model
Xiuqi Zhang, Ning Ge,TAK Biochemistry 2006/2007

BLG Binding to DMPG at pH 6.8: Circular Dichroism

 $-\beta$-sheet to α-helix transition, dependence on DMPG

Secondary structure: Binding DMPG at pH6.8, causes BLG conformational change. The α-helix formed with loss of β-sheet.

Effect of lipid charge:

-How does the charge of lipid affect protein binding?

Effect of Charge: Addition of neutral lipid (DMPC) decreases lipid charge and α-helix in BLG:DMPG mixture (left). So negative charge of lipid is necessary for the formation of α-helix (right).

Xiuqi Zhang, TAK

Biochemistry 2006
BLG in varying DMPG / DMPC mixture

Orientation of BLG into lipid membrane:
 -Polarized ATR-FTIR spectra of DMPG-bound BLG

CH_{2} str

Summary $\beta L G$: Orientation of protein segments

 Some portions of BLG inserted into bilayer. The positive amide I peaks at 1654 and $1637 \mathrm{~cm}^{-1}$ suggest that α-helices have a preferred orientation perpendicular to the membrane surface, and β-sheets are probably not inserted, at both pHs.Current studies - Ning Ge various membrane systems

Dynamics--Scheme of Stopped-flow System - add dynamics to experiment

Stopped-flow ECD and Fluorescence of acid denatured Cyt c refolding by neutralization with phosphate buffer

VIBRATIONAL OPTICAL ACTIVITY

Differential Interaction of a Chiral Molecule with Left and Right Circularly Polarized Radiation During Vibrational Excitation

VIBRATIONAL CIRCULAR DICHROISM

Differential Absorption of Left and Right Circularly Polarized Infrared Radiation

RAMAN OPTICAL ACTIVITY

Differential Raman Scattering of Left and Right Incident and/or Scattered Radiation

Combining Techniques: Vibrational CD "CD" in the infrared region

Probe chirality of vibrations \rightarrow goal stereochemistry
Many transitions / Spectrally resolved / Local probes
Technology in place -- separate talk
Weak phenomenon - limits S/N / Difficult $<700 \mathrm{~cm}^{-1}$
Same transitions as IR
same frequencies, same resolution
Band Shape from spatial relationships
neighboring amides in peptides/proteins
Relatively short length dependence
AA_{n} oligomers VCD have $\Delta \mathrm{A} / \mathrm{A} \sim$ const with n vibrational (Force Field) coupling plus dipole coupling
Development -- structure-spectra relationships
Small molecules - theory / Biomolecules -- empirical,
Recent-peptide VCD can be simulated theoretically

Large electric dipole transitions can couple over longer ranges to sense extended conformation

Simplest representation is coupled oscillator

$$
\mathrm{R}^{ \pm}=\mp\left(\frac{\pi v}{2 c}\right) \vec{T}_{a b} \cdot\left(\vec{\mu}_{a} \times \vec{\mu}_{b}\right)
$$

Dipole coupling results in a derivative shaped circular dichroism

Real systems - more complex interactions

- but pattern is often consistent

Selected model Peptide VCD, aqueous solution

VCD Example: α - vs. the 3_{10}-Helix

The VCD success example: 3_{10}-helix vs. α-helix

Relative shapes of multiple bands distinguish these similar helices
Silva et al. Biopolymers 2002

 Biphenyl bridged residues (Bip) CD and IR difficult to get structure

CD-all biphenyl

 әэuequosqy

Figure 4. FT-IR absorption spectra ($3500-3250 \mathrm{~cm}^{-1}$ region) in CDCl_{3} Figure 3. CD spectra of the Boc-L-Val-Bip-OMe (L1N), Boc-D-Val-Bip solution of (A): Z-(Bip) $n_{n}-\mathrm{L}-\mathrm{Val}-\mathrm{OMe}(n=2-4)(\mathrm{L} 2 \mathrm{C}-\mathrm{L4C})$ and (B) BocOMe (D1N), Boc-Bip-L-Val-OMe (LlC), and Boc-Bip-D-Val-OMe (DlC L-Val-(Bip) $n_{n}-\mathrm{O} t \mathrm{Bu}(n=2-4)(\mathbf{L 2 N}-\mathbf{L 4 N})$. Peptide concentration: 1 mM . dipeptides in MeOH solution.

Biphenyl bridged residues (Bip) show inversion

Ac -(Bip) 3_{3}-L-Val-OMe (—) left-handed
Boc-L-Val-(Bip) 4_{4}-OtBu (-------) right-handed (3_{10}-helix)

Vibrational spectrum separates aromatic and amide transitions

Figure 1 VCD (upper frame) and IR absorption (lower frame) spectra of $\mathrm{Ac}-(\mathrm{Bip})_{3}$-L-Val-OMe (full lines) and Boc-L-Val-(Bip) ${ }_{4}-\mathrm{OtBu}$ (dashed lines). Spectra of Ac-(Bip) 3_{3}-L-ValOMe were measured in $46 / 11(\mathrm{v} / \mathrm{v})$ $\mathrm{CDCl}_{3} / \mathrm{TFE}-\mathrm{OH}$ and Boc-L-Val(Bip) ${ }_{4}$-OtBu in CDCl_{3} solution using the cell pathlength $500 \mu \mathrm{~m}$ and peptide concentration of 9.5 and 8.6 g / L, respectively.

Toniolo, co-workers JACS 2004

Nature of the peptide random coil form

Tiffany and Krimm in 1968 noted similarity of Proline II and poly-lysine ECD and suggested "extended coil" Problem -- CD has local sensitivity to chiral site --IR not very discriminating

Dukor and Keiderling 1991 with ECD, VCD, and IR showed $\mathrm{Pro}_{\mathrm{n}}$ oligomers to have characteristic random coil spectra Suggests -- local order, left-handed turn character -- no long range order in random coil form

Same spectral shape found in denatured proteins, short oligopeptides, and transient forms

ECD of $\operatorname{Pro}_{\mathrm{n}}$ oligomers

Dukor, Keiderling - Biopoly 1991

Greenfield \& Fasman 1969

Relationship to "random coil" - compare $\operatorname{Pro}_{\mathrm{n}}$ and Glu ${ }_{\mathrm{n}}$

IR ~ same, VCD - same shape, half size -- partially ordered
Dukor, Keiderling - Biopoly 1991

Keiderling. . . Dukor, Bioorg-MedChem 1999

Frequency shift of ${ }^{12} \mathrm{C}$ amide I' VCD band minimum with temperature: a) terminal, b) middle labeled. Unlabeled added for comparison.

Relative position of isotope labels An examination of amide coupling

Ala-rich peptides (25 mer) with a high propensity for helix formation were synthesized and purified at Mount Holyoke. ${ }^{13} \mathrm{C}$-labels (on the amide $\mathrm{C}=\mathrm{O}$) were incorporated into the peptide as follows: (red refers to labeled residues)

Unlabel: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2} 2LT: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}
2L1S: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}
2L2S: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}
2L3S: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY-NH2
3LT: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY-NH ${ }_{2}$
3L1S: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}
4LT: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}
4L1S: Ac-AAAAKAAAAKAAAAKAAAAKAAAAY- NH_{2}

Isotopic labeling-- experiment and theory

Two sequential labels have higher IR freq. due to coupling (intensity in high v mode), VCD : sequential (2LT) - same sign ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$, but opposite sign if separated (2L1S) * since exp. in $\mathrm{D}_{2} \mathrm{O}$ a (-)VCD band develops the amide I , not modeled without solvent

Nucleic Acid VCD

- Wieser and co-workers (Calgary) have made much progress with model systems, including metal interactions and drug binding
- Here give examples of basic spectral response

VCD of DNA, vary A-T to G-C ratio

big variation
sym $\mathrm{PO}_{2}{ }^{-}$stretches

little effect

DNA VCD of $\mathrm{PO}_{2}{ }^{-}$modes in B - to Z-form transition

Experimental

Theoretical

Triplex DNA, RNA form by adding third strand to major groove with Hoogsteen base pairing

5'Py

VCD of Triplex formation-base modes

Protein VCD

- Protein CD has been used to develop secondary stucture algorithms (Pancoska et al.) and to follow folding and unfolding processes.
- Due to complexity of the structue and S / N limitations, more quantiative work has been done with peptides

Comparison of Protein VCD and IR

FTIR in $\mathrm{H}_{2} \mathrm{O}$

VCD of amide I', I+II an III regions in selected proteins

High helix

High sheet

Mixed

CAS-
unstructured

VCD Example: α-Lactalbumin and Lysozyme

- Homologous proteins
- Similar crystal structures
- Lysozyme VCD spectra is not the same as that of α-Lac
$\square \alpha$-Lac stabilize by Ca^{+2} needs to bind a coprotein, so flexible

